

BRIDGE INSPECTION MANUAL

FOR ARBICS AND PBC

EDITION 1

The Project for Strengthening of Capacity Development on Bridge Management System in the Republic of Kenya

BRIDGE INSPECTION MANUAL FOR ARBICS AND PBC Year of Publication: 2023 Edition 1 © Japan International Co-orporation Agency Nairobi

The production of this manual has been possible thanks to the support of JICA through the Bridge Management Systems Project.

TABLE OF CONTENTS

FOR	EWOR	U	7
ACK	NOWL	EDGMENT	9
ABB	REVIA	TIONS AND ACRONYMS	11
DEF	INITIO	NS	13
1.	GEN	ERAL	17
	1.1	Background	-, 17
	1.2	Purpose	17
	1.3	Objectives	17
	1.4	Scope of Application of the Manual	18
	1.5	Reference Manuals	18
	1.6	Classification of Bridges	19
	1.7	Bridge Inspection and Evaluation System	20
	/	1.7.1 Background	20
		1.7.2 Scope of Bridge Inspection	20
		1.7.3 Types and Frequency of Bridge Inspection	20
		1.7.4 Bridge Inspection Structure	21
		1.7.5 Bridge Inspection Methods	24
		1.7.6 Bridge Inspection Procedure	24
	1.8	Qualification of Bridge Inspection Personnel	25
		1.8.1 Bridge Inspection Team Leader	25
		1.8.2 Bridge Inspection Engineers	26
		1.8.3 Bridge Inspectors	26
	1.9	Health and Safety	26
		1.9.1 General	26
		1.9.2 Pre-inspection	26
		1.9.3 Safety during inspection	27
		1.9.4 Health and safety Checklist (safety gear, tools and equipment)	27
	1.10	Condition Rating	28
		1.10.1 Definition	28
		1.10.2 Routine inspection condition rating	29
		1.10.3 Routine inspection calculation approach	30
		1.10.4 Categories of Soundness Evaluation for Initial inspection	31
	1.11	Record	32
	1.12	Repair Work	32
2.	ROU	TINE INSPECTION FOR PBC	33
	2.1	General	33
	2.2	Methodology	33
	2.3	Service Levels	34
	2.4	Service Level Inspection	34
	2.5	Inspection Report	35

3	ROUT	TINE INSPECTION FOR ARBICS	36
	3.1	General	36
	3.2	Methodology	36
	3.3	Inspection Equipment	36
	3.4	Bridge Inventory	36
	3.5	Inspection Items	36
	3.6	Evaluation of Defects	39
	3.7	Inspection Report	39
	3.8	Bridge Inspection Key Points for ARBICS	39
		3.8.1 General Areas to check during Annual Inspection	39
		3.8.2 Key Points of Inspection for a Concrete Bridge	40
		3.8.3 Key Points of Inspection for Steel Bridge	45
		3.8.4 Key Points of Inspection for Substructure	49
		3.8.5 Key Points of Inspection for Bearing	50
		3.8.6 Key Points of Inspection for Box Culvert / Arch Culvert	51
	FOR A	1: GUIDELINE FOR SOUNDNESS DIAGNOSIS FOR ROUTINE INSPECTION ARBICS	52 113
Appe			
		, , , , , , , , , , , , , , , , , , ,	113
		,	114
		,	115
		· · · · · · · · · · · · · · · · · · ·	116
		•	117
			118
	Appe	endix 2(g) Sample Photo Image for bridge structure performance	119
APPE	NDIX	3: PBC INSPECTION FORM	129
APPE	NDIX	4: ROUTINE INSPECTION FORM	131

LIST OF TABLES

Table 1	Reference manuals list	18
Table 2	Classification of bridges	19
Table 3	Examples of Complex Bridges	19
Table 4	Types of bridge inspection	23
Table 5	Bridge inspection methods	24
Table 6	Sequences for bridge inspection	25
	Health and safety Checklist	27
	Record of bridge inspection	32
Table 9	Bridge Maintenance Item under PBC	34
Table 10	Tools & Equipment	36
	Inspection Items for ARBICS	37
Table 12	General Inspection Checklist	39
Table 13	Concrete girder defects	40
	Common defects on a Concrete Slab Bridge	43
Table 15	Steel Bridge viewpoint	45
Table 16	Substructure	49
Table 17	Bearings	50
Table 18	Box Culvert / Arch Culvert /ARMCO culverts	51

LIST OF FIGURES

Figure 1	Inspection structure	22
Figure 2	Bridge distribution of donated points	30
Figure 2	Bridge inspection inputs method	32
Figure 3	Concrete girder	41
Figure 4	PC Girder (PC Steel Arrangement	41
Figure 5	Anchorage on PC Steel	41
Figure 6	Gerber Section	42
Figure 7	PC T-Girder Bridge	42
Figure 8	PC Box Girder Bridge	42
	PC Pretension Hollow Floor Slab Bridge	43
Figure 10	Concrete Slab	44
Figure 11	Example of Filling Part and Rebar Arrangement Method	45
Figure 12	Steel Plate Girder Bridge	47
Figure 13	Girder End	47
Figure 14	Vicinity of Drainage Device	47
Figure 15	Steel Box Girder Bridge	48
Figure 16	Inside Box Girder	48
Figure 17	Steel slab	48
Figure 18:	Abutment and Pier	50

FOREWORD

Bridges are integral elements of our road network. They perform effective linkage between two destinations thus they are critical for the economy. Despite their importance, maintenance of bridges has often not been prioritised in road network maintenance planning. This could be attributed to limited resources as well as other competing road network priorities. As a consequence, the deterioration rate of most bridges is not matched with maintenance interventions thus shortening their service life. Global warming and change in land use have made things worse as there has been a remarkable increase in surface run-off, resulting in overtopping and damage of bridges during the wet seasons. Therefore, without adequate attention, most bridges will be unsafe for use and will hinder the movement of people, goods, and services.

It is in view of the above, that there is need to put in place a framework to promote the inspection and maintenance of bridges in the road sector. This will ensure that our road assets are fit for purpose and safely provides connectivity at all times. This inspection manual is a product of a stakeholder-driven process which is intended to be a reference document to guide engineers and inspectors in carrying out bridge inspections and maintenance. The manual will be available for use for both the national government and county governments.

The objectives of this manual include assessing the current condition of the bridges and facilitating timely implementation of remedial measures, updating inventory data and carrying out performance evaluation of bridges. This will help to establish structural soundness, condition index and serviceability of the bridges to inform maintenance, improvements, design, and construction and to enable adequate planning and provision of resources essential to achieving efficient and effective bridge maintenance.

The manual addresses the most common bridge defects by outlining practical procedures for inspection and recommending appropriate tools and equipment to carry out the exercise. Defects have been discussed in detail with the help of pictures and sketches for ease of understanding. It is a comprehensive document and its implementation will be regularly monitored and reviewed to ensure it responds to emerging issues and meets desired performance.

To this end, the National Working Group (NWG) and the Sub-Working Group (SWG) have realized this important milestone for the road sector under *The Project for Strengthening of Capacity Development on Bridge Management System in the Republic of Kenya*, JICA. The implementation stage of this manual requires provision of adequate resources for the inspection and repair program and active participation by the stakeholders.

Eng. Joseph M. Mbugua

Principal Secretary
State Department for Roads
Ministry of Roads and Transport
P.O. Box 30260 – 00100, NAIROBI.

ACKNOWLEDGMENT

The Government of Kenya, through the Ministry of Roads and Transport- State Department of Roads, would like to express its sincerest gratitude to the Japan International Cooperation Agency (JICA), Joint Coordinating Committee and National Working Group for supporting the process leading to the publication of this *Inspection Manual* and *Bridge Inspection Handbook*.

The Ministry would like to extend sincere appreciation to the government departments and agencies that constituted the Bridge Inspection and Database Sub-Working Groups (BI-SWG) that worked tirelessly to develop this Manual. In this regard, special thanks go to: -

JICA Bridge Management System Project Team

Kenya Roads Board (KRB)

Kenya National Highways Authority (KeNHA)

Kenya Rural Roads Authority (KeRRA)

Kenya Urban Roads Authority (KURA)

Kenya Wildlife Services (KWS)

Kenya Institute of Highways and Building Technology (KIHBT)

National Construction Authority (NCA)

Materials Testing and Research Department (MTRD)

Additionally, this Manual benefited greatly from the dedication of various individuals who were part of the Bridge Inspection and Database Sub-Working Groups (BI-SWG) that reviewed several literatures, best practices and held workshops to develop a well-benchmarked document for posterity. In line with this, special recognition goes to the below-named individuals for their immense contributions to the process.

Eng. James Kung'u	MoRT	Eng. Jane N. Mapelu	KURA
Eng. Julius M. Nginya	MoRT	Eng. Abdulrahman G. Tubi	KURA
Eng. Samuel Omer	KeNHA	Eng. John K. Mwangi	KeRRA
Eng. Ezekiel W. Fukwo	KeNHA	Salome Wabuyele	KRB
Eng. Jared Makori	KeNHA	Phires Ogoti	KIHBT
Victor G. Njiru	KeNHA	Robert Okuku	KWS
Annette Aming'a	KeNHA	Kennedy M. Nyaga	MTRD
Judith Makuba	KeNHA	Eng. Proson Kipngeno	NCA

Further, we acknowledge the critical role played by the JICA Bridge Management System (BMS) Project team who deserves to be mentioned:

Dr. Hayashi Kunihiro	Mr. Fujiwara Katsuya	Mr. Nakajima Takashi
Ms. Iwamasa Hitomi	Mr. Watanabe Masatoshi	Mr. Hanawa Kikuo
Ms. Victoria Wawira	Mr. James Nyaga	Mr. John Agutu

Mr. Wycliffe Magoma

Eng. J. M. Kung'u

Chief Engineer, Ministry of Roads and Transport, State Department for Roads

ABBREVIATIONS AND ACRONYMS

AfDB	African Development Bank
AADT	Annual Average Daily Traffic
ARICS	Annual Road Inventory and Condition Survey
AC	Asphalt Concrete
ARBICS	Annual Road and Bridge Inventory and Condition Survey
BMS	Bridge management System
BI	Bridge Inspection
BICS	Bridge Inventory and Condition Survey
EBK	Engineers Board of Kenya
EDM	Electronic Distance Metre
GPR	Ground Penetrating Radar
GPS	Global Positioning System
JICA	Japan International Cooperation Agency
KeNHA	Kenya National Highways Authority
KeRRA	Kenya Rural Roads Authority
KETRB	Kenya Engineering Technology Registration Board
KURA	Kenya Urban Roads Authority
KWS	Kenya Wildlife Services
KRB	Kenya Roads Board
KIHBT	Kenya Institute of Highway and Building Technology
MoTIHUD & PW	Ministry of Transport , Infrastructure , Housing, Urban Development and Public works
MTRD	Materials Testing and Research Division
NCA	National Construction Authority
NDT	Non-Destructive Test
NWG	National Working Group
PBC	Performance Based Contracts
PC	Pre-stressed Concrete
RAs	Road Agencies
RC	Reinforced Concrete
SWG	Sub-Working Group
vpd	Vehicles per day

DEFINITIONS

Abutment Vertical structural member located at the end of a bridge that

connects the embankment portion of the approach road to the bridge. It supports the load from the superstructure and counters the earth

pressure from the backfill.

ARMCO Culvert Corrugated steel pipe culvert

Approach Slab It is a concrete slab installed behind the abutment that acts as an

intermediate bridge to avoid abrupt changes in elevation or alignment.

Back wall The vertical wall at the ends of abutments that extends up from the

bearing seat and supports the approach slabs, expansion joints and

the embankment under the approach slabs.

Baseline inspection An initial inspection conducted on a new bridge or an existing bridge

to determine the primary condition in order to obtain information for

BMS database and for future maintenance.

Bearing Bearings are devices which transmit the vertical and horizontal actions

from the superstructure to the substructure, and allow for movements between the superstructure and the substructure. Bearings allowing both rotation and longitudinal translation are called expansion/movable bearings, and those, which allow rotation, only are called

fixed bearings

Bridge A structure, that can be accessed by any traffic, with the function of

aiding crossing over a waterway, road or any other obstacle. In the context of this manual, it also includes box culverts, viaducts and

tunnels.

NOTE: The terms bridge and structure can be used interchangeably.

Carriageway The part of the bridge surface which carries vehicular traffic.

Complex bridge A complicated structure by design and construction that requires

specialized maintenance intervention.

Condition Rating This is a status indicator for bridge elements based on location, severity

and element importance assigned after detailed inspection.

Contractor An entity engaged by the Employer for the implementation of supply,

maintenance and/or repair assignment.

Corrosion The gradual deterioration of material (usually metals) by oxidation

reaction forming a more stable oxide.

Damage Defect due to external forces e.g., Flood, Vehicular load, Vehicular

collision, Earth pressure, Vandalism.

Deck slab A structural member that directly supports vehicles, pedestrians, etc.

passing through a bridge and transmits loading to the main girder

(main structure).

Defect Collective term for initial flaw, damage and deterioration

Deterioration Defects caused by changes in condition with age e.g., Carbonation,

Alkali-silica reaction, Salt damage

Diaphragm It is a bracing that connects main girders to resist lateral actions and

transfer loads to the supports. It locks the girders in place and also

provides support to the deck slab.

Drainage facility A system that channels water away from the bridge deck, abutments

and wing walls.

Emergency inspection Inspection carried out after detection of abnormalities on the bridge.

This may be after a natural disaster or accident to confirm safety of the

bridge for use

Employer The procuring entity responsible for the road network in Kenya and

who enters into a road/bridge maintenance contract with a contractor

on a certain section of the road.

Engineer The representative of the Employer with responsibilities and obligations

under the maintenance contract

Expansion gap A gap provided to allow for expansion and contraction due to

temperature changes. It can be between a bridge girder and abutment

or between girders that are not continuous.

Expansion joint It is a device installed at the expansion gap to ensure smooth expansion

and contraction and to allow automobiles and other vehicles to run

smoothly on the bridge. It is mainly made of steel or rubber.

Fill Soil placed at the back of the abutment

Foundation The part of the substructure that is in contact with the ground.

Depending on the form, there are different types of foundations such as spread footing, pile foundations, and caisson foundations, etc. It

transmits the loading from the substructure to the ground.

Implementers The entity or persons directly involved in the inspections, maintenance/

repair of bridges. In maintenance of bridges, the implementers are the road agencies, engineering consultants and contractors engaged in

the construction, repair and maintenance of structures/roads.

Initial Defect Anomalies which are caused by design or occur during construction

(poor workmanship) e.g Honeycomb, Cold joint.

Inspection Diagnostic examinations on a bridge to discover any anomalies on the

structural members.

Main girder/ Main structure The main part of a superstructure that supports all the loads acting

on the bridge. In general, it is called main girder in the case of girder structure, and main structure in the case of truss or arch structure.

Maintenance The actions taken to keep the condition of a structural element to

perform its level of service satisfactorily during its service life.

Obstructions Accumulation of debris, driftwoods and stamps, rocks, silt, animals or

anything that may impede free flow of water through a structure.

Ordinary bridges Simply supported bridges with span lengths less than or equal to 30m.

PBC works A series of works and services required for routine maintenance to

bring up the bridge/road condition to the required service levels. Works and services are normally labour based works and pavement

repair works

Performance It is the level of achievement or compliance with the specified service

levels

Performance Based

Contracting

A series of works and services required for routine maintenance to bring up and sustain the bridge/road condition to the specified service

levels.

bridges.

Pier A substructure member which supports the superstructure at

intermediate points, and transmits the load to the foundation.

Repair This is the reinstatement of a damaged member or structure to its

designed or as-built condition.

Road Agencies The Agencies dealing with structures that are part of the road network

which include: Kenya National Highways Authority (KeNHA), Kenya Rural Roads Authority (KeRRA), Kenya Urban Roads Authority (KURA), Kenya Wildlife Services (KWS), County Governments and any other

stakeholders.

Routine inspection for

ARBICS

This inspection is carried out annually to obtain bridge condition

information for maintenance planning purposes.

Routine inspection

for PBC

Inspection to confirm the serviceability of a bridge conducted *at least* once a month to check for defects with an aim of ensuring smooth

traffic flow and preventing damage/hazards to third parties.

Service Level Service level is the minimum performance standards for the level of

quality for each service criteria set under various service scope of the

road as defined in the specifications

Special inspection Inspection for diagnostic study to examine the cause and extent of the

damage based on findings from other inspections.

Stakeholders Person(s) with interest in the use and operationalization of Inspection

manual for bridges. They include the road agencies, engineering consultants, contractors, road users and the communities affected by

the presence and usage of the bridge.

Substructure The bridge structure that supports the superstructure and transfers

loads from it to the ground or bedrock. The main components are

abutments, piers, footings, and pilings.

Superstructure The bridge structure that receives and supports traffic loads and in turn,

transfers those loads to the substructure. It includes the main girder, deck slab, cross beam, lateral bracing, diaphragms. It comprises all the

structural components of a bridge above the supports.

Wing wall

It is a wall adjacent to the abutment designed to retain-backfill material behind the abutment. The wing wall can be monolithic with the abutment or disjoint.

1. GENERAL

1.1 Background

Road transport is the predominant transport mode in Kenya. It carries over 90% of all passenger and freight traffic. The road assets portfolio is estimated at Kshs 3.5 trillion. The Assets comprise of over 161,000 km of classified roads and thousands of bridges.

Bridges are important elements of the road network. The road network should be looked at holistically considering the pavement itself, the alignment, drainage and crossing structures, use of the road and also, social and environmental aspects of the region being connected by the road.

It is in these considerations that there is need to improve the inspection and maintenance of the available bridges on our road network.

As new bridges are being built and old ones being replaced, the bridge inventory should be kept up-to-date to ensure that inspections being carried out continuously are properly referenced to the particular bridge.

Bridge Inspection is necessary due to the aging of bridges and changes in traffic factors. Further, due to global warming and change of land use, there has been remarkable increase in surface run-off, resulting in overtopping of some bridges during the wet seasons thus disrupting the movement of people, critical goods and services that are needed for the economy to prosper. Continuous data collection and reporting of the condition and functionality is key to ensure that there is sufficient and reliable data to justify the repair, maintenance and replacement, if need be, of the bridge in question.

1.2 Purpose

The purpose of this manual is to ensure consistency in bridge inspection, rating and evaluation across the various agencies tasked with bridge management.

This manual sets the standard rules for the data to be collected, frequency and methods to employ in bridge inspection. It is a reference book for achieving the objectives of bridge inspection.

1.3 Objectives

The objectives of implementing bridge inspection are:

- (a) To facilitate collection and updating of appropriate inventory data to enable the establishment of sustainable maintenance programmes;
- (b) To assess the current condition of the brdges and carry out performance evaluation, establish structural soundness, condition index and serviceability to inform maintenance, improvements, design and construction.
- (c) To facilitate timely implementation of remedial measures for safe and smooth traffic flow.
- (d) To enable adequate planning and provision of resources essential to achieving efficient and effective bridge maintenance.

- (e) To harmonise existing procedures and practices, leveraging on international best practices to provide a standard approach to road structures inspections.
- (f) To ensure safe and smooth traffic flow and prevent damage to roadside structures and third parties.

1.4 Scope of Application of the Manual

This Inspection Manual shall apply to bridges managed by Road Agencies implementing Performance Based Contracts (PBC) and Annual Road and Bridge Inventory and Conditions Survey (ARBICS) on their networks.

1.5 Reference Manuals

Reference manuals to be used are as outlined in *Table 1*.

Table 1 Reference manuals list

No	Types of Bridge Inspection	Activity	Reference Manual
1	Baseline Inspection	Detailed condition of the bridge	Bridge Principal Inspection Procedure Manual
			Structure Inventory Procedure Manual
			Inspection Manual for Bridges (Principal)
2	Routine Inspection	General, Methodology, etc.	Routine Inspection USER Manual
	for PBC		PBC Guideline
		Performance level	Bridge Inspection Manual for ARBICS & PBC
		Record / Report	Routine Inspection USER Manual
3	Routine Inspection for ARBICS	General, Methodology, etc.	Bridge Inspection Manual for ARBICS & PBC
		Evaluation (Damage level)	Bridge Inspection Manual for ARBICS & PBC
		Record	Routine Inspection USER Manual
4	Periodic Inspection	General, Methodology, etc.	Inspection Manual for Bridges (Principal)
		Evaluation (Damage level)	Damage catalogue
		Record	Bridge Principal Inspection Procedure Manual
5	Special Inspection		Inspection Manual for Bridges (Principal)
6	Emergency Inspection		Inspection Manual for Bridges (Principal)

1.6 Classification of Bridges

For the purpose of this manual, bridges are classified into "Ordinary bridges" and "Complex bridges".

Table 2 Classification of bridges

Classification	Explanation	
Ordinary bridges Simply supported bridges with span lengths less than or equal to 30m.		
Complex bridge	A complicated structure by design and construction that requires specialized maintenance intervention.	

Table 3 Examples of complex bridges

	Name of bridges	Type of Bridge
1.	Masalani bridge	Suspension bridge
2.	Bura bridge	Cable Stayed bridge
3.	Nyali bridge	Box Girder bridge
4.	Mtwapa bridge	
5.	Sabaki bridge	
6.	Kilifi bridge	
7.	Baricho bridge	
8.	Marigat bridge	Steel Truss bridge
9.	Galana Kulalu bridge	
10.	Endau bridge	
11.	Nginyang bridge	
12.	Wei Wei bridge	
13.	Lomut bridge	
14.	Mbita Causeway bridge	
15.	Kalobeyei River bridge	
16.	Lugards bridge	Bailey bridge
17.	Thua bridge	Steel box girder/modular
18.	Likoni floating footbridge	Steel truss/floating truss
19.	Makupa Bridge,	Pre-Stressed Conc. girder bridge
20.	Mteza Bridge	
21.	Tsunza bridge	
22.	Mwache bridge	

1.7 Bridge Inspection and Evaluation System

1.7.1 Background

Bridge inspection is an assessment of the condition and detailed investigation and evaluation of damage and/or material properties of specified bridge elements. The damage may be due to environmental impact (climate, saline soil, natural calamities, etc.), wear (insufficient maintenance), design and construction errors and overloading or similar conditions.

Inspection is the first step of maintenance where any deterioration or problems can be detected at an early stage, documented, reported and addressed before they get worse and costly.

Preservation of bridges and the safety of the road users depend largely on regular inspections and maintenance of the bridges.

The purpose of inspection is not only to identify clearly visible defects but also to anticipate the progress of minor defects and recognize where they are likely to occur and their probable causes.

Bridge inspectors should allocate sufficient time for undertaking inspection and collection of data, based on the type, size and complexity of the structure. Bridge inspection should be conducted with accuracy and thoroughness.

The data should then be evaluated to develop the bridge condition index, which informs the planning of interventions, prioritization of maintenance needs and assignment of resources.

1.7.2 Scope of Bridge Inspection

The scope of bridge inspection should include but not limited to:

- Review of any previous inspection reports;
- 2) Determination and provision of equipment and resources required for the inspection including preparation of a safety plan;
- 3) Inspection of all relevant bridge attributes including measurements, testing and analysis as necessary to supplement the visual inspection; and
- 4) Identification of the probable causes and projected rate of deterioration and the effects of continued deterioration on the performance, durability and residual life of the bridge.

1.7.3 Types and Frequency of Bridge Inspection

This manual recognizes the following types of bridge inspections:

- 1. Baseline Inspection
- 2. Routine Inspection for PBC
- 3. Routine Inspection for ARBICS
- 4. Periodic Inspection
- 5. Special Inspection
- 6. Emergency Inspection

1 Baseline Inspection

Baseline inspection is the first/initial inspection after a bridge has been constructed and commissioned. It collects the baseline information for storage in a database, as a reference point for all future inspection.

2 Routine Inspection for PBC

The purpose of Daily Inspection is to detect abnormalities as early as possible for preventive maintenance consideration. Inspection of normal and special bridges shall be conducted as per the specifications in the PBC.

3 Routine Inspection for ARBICS

The purpose of Routine Inspection is to directly inspect and understand the condition of the bridges for budget preparation. Bridge Inventory and Condition Survey (BICS) shall be conducted annually. This is mainly through visual inspection with the support of binoculars, robot camera, drones and bridge checkers.

4 Periodic Inspection

Periodic inspection is for checking the soundness of bridges and shall be conducted at intervals of five (5) years. It should be conducted for all bridges to reduce maintenance and rehabilitation cost in the long term. The special bridges have many structural members to be inspected and therefore require preparation of an inspection plan which shall include safety control, materials and equipment. The Periodic Inspection shall be based on detailed visual inspection and Non-Destructive Test (NDT).

5 Special Inspection

Special Inspection is for diagnostic study to examine the cause and extent of the damage based on the findings from the previous inspection results in order to prepare a detailed plan of action. The diagnosis may involve field tests, laboratory tests and the structural performance monitoring.

6 Emergency Inspection

Emergency Inspection may be carried out upon detection of severe defect(s) on the bridge. This inspection is done after occurrence of a natural disaster or accident to ascertain the safety of the bridge for use and/or recommend appropriate remedial measures.

1.7.4 Bridge Inspection Structure

Bridge Inspection is composed of 5 layers in accordance with the objectives of the inspection. Thus, the data to be collected, methodology to be applied and preparation may differ. The inspection structure is illustrated below in *Figure 1*: Inspection structure and a summary of the gist of methodology outlined in *Table 3*.

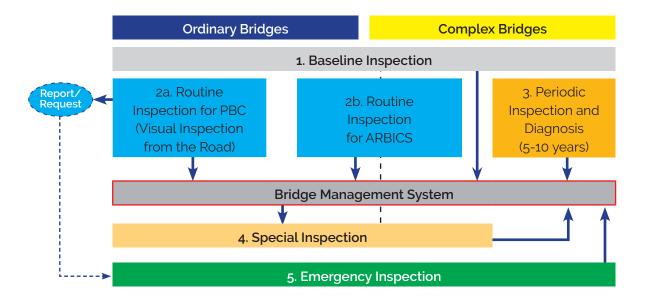


Figure 1 Inspection structure

Table 4 Types of bridge inspection

Subject Bridge	Ordinary Complex	>	or	>	√ √' Priority	<i>'</i>	>
Implementer		RAs	PBC Contractor	RAs	RAS	RAs	
Frequency		Once	Monthly	Annually	Every 5 th to 10 th year	Whenever	necessary
Methodology		Visual inspection and data from As Built drawings.	Visually Inspecting the bridge with the naked eye to look for failure, damage, debris etc. from the road	Visual inspection together with annual road inventory condition inspection	Detailed visual inspection and measurement, Non-Destructive Test and equipment/technical gear	Investigation using equipment/	technical gear
Objectives of the	inspection	To record the initial bridge data after construction	To keep smooth traffic flow, avoid third party disaster	To estimate budget	To assess soundness of the bridges	To design for repair and	
Types of Bridge	Inspection	1. Baseline Inspection	2. Routine inspection for PBC	Routine inspection for ARBICS	4. Periodic Inspection	5. Special Inspection	

Periodic inspection should cover all the bridges. However, due to time and cost constraints, priority should be given to complex bridges while ordinary bridges can be monitored annually under ARBICS

1.7.5 Bridge Inspection Methods

Typical bridge inspection methods conducted by qualified inspectors are shown in Table 5.

Table 5 Bridge inspection methods

	Method	Description
i	Visual inspection	Inspection technique that utilizes very basic tools (e.g., flashlights, sounding hammers, tape measures, plumb bob, and binoculars).
ii	Visual testing	Inspection technique where specific invasive tools such as borescopes ² and other optical devices are used to aid visual inspection.
iii	Acoustical Techniques	This is a non-destructive technique which is performed using a chain drag or hammer to identify changes in sound pitch. The test is able to detect delamination, as well as the separation of coating or the splitting of a member into layers.
iv	Infrared / Thermal Imaging Inspection	This is also a non-destructive practice that examines changes in infrared radiation from the surface of concrete and indicates delamination.
V	Coring and Chipping	A destructive technique that uses a drilled core to create a hole in order to connect to the steel reinforcement and assess corrosion damage, and mechanical and chemical properties of the concrete.
vi	Ground Penetrating Radar (GPR)	This non-destructive test uses electromagnetic radiation to image the subsurface of the concrete and detect changes such as delamination, voids, and cracks.
vii	Half-Cell Potential Test	This non-destructive testing technique assesses the voltage between the steel reinforcement within the concrete and an electrode which is placed on the concrete's surface to map corrosion activity

1.7.6 Bridge Inspection Procedure

Bridge inspection shall adopt the following sequences and orientation for uniformity.

² A borescope (occasionally called a boroscope, though this spelling is nonstandard) is an *optical instrument* designed to assist *visual inspection* of narrow, difficult-to-reach *cavities*, consisting of a rigid or flexible tube with an *eyepiece* or *display* on one end, an *objective lens* or *camera* on the other, linked together by an optical or electrical system in between. The *optical system* in some instances is accompanied by (typically *fibreoptic*) *illumination* to enhance *brightness* and *contrast*. An internal image of the illuminated object is formed by the objective lens and *magnified* by the eyepiece which presents it to the viewer's eye.

Table 6 Sequences for bridge inspection

Longitudinal orientation	Longitudinal orientation West – East or South - North				
Transverse orientation	Transverse orientation Left to Right				
Sequence of Bridge part inspection					
Parts/Section	Inspection	Remarks			
General observation	Observation including capturing photographic images of the whole bridge structure from different views				
Road condition of approaches	Road surface condition including installations within 100m to the bridge	Both sides			
Top of the bridge	Condition of the bridge installations: Guard Rails, Drainage system, road wear- ing course, pedestrian walkways, hand rails, lighting, furniture and expansion joints	Longitudinally			
Superstructure	Deck, Girders, Bearings	Inspect each span transversely from left to right proceeding longitudinally from West – East or South – North depending on bridge orientation			
Sub-Structure	Piers, abutment, embankments,	West - East or South - North depending on bridge orientation			
Foundation	Piles, pads, pile caps	West - East or South - North depending on bridge orientation			
Stream/River	River bed, banks	Upstream to downstream 100 m either side			

1.8 Qualification of Bridge Inspection Personnel

1.8.1 Bridge Inspection Team Leader

- The Team Leader should be registered as a professional Engineer with the Engineers Board of Kenya (EBK).
- Have a Bachelor's degree in Civil Engineering or an equivalent from an accredited university.
- Have at least five years' experience in the design, supervision and maintenance of road and bridges.
- Should have successfully completed a Bridge Management course from the Kenya Institute of Highways & Building Technology (KIHBT).

1.8.2 Bridge Inspection Engineers

- Bridge inspection Engineers should be registered as graduate Engineers under the Engineers Board of Kenya (EBK).
- Have a bachelor's degree in Civil Engineering or an equivalent from an accredited university
- Have at least three years' experience in the design, supervision and maintenance of road and bridges.
- Should have successfully completed a KIHBT Bridge Management course.

1.8.3 Bridge Inspectors

- Bridge inspectors should be registered as a Technologist with the Kenya Engineering Technology Registration Board (KETRB)
- Have a higher diploma or a Diploma in Civil Engineering.
- Have at least three years' experience in the design, supervision and maintenance of bridges.
- Should have successfully completed a KIHBT Bridge Management course.

1.9 Health and Safety

1.9.1 General

During inspection, safety practices are essential and of priority for the protection and safety of inspection personnel, general public and the surrounding environment. It is therefore advisable that inspections are conducted by a team that is trained on equipment and safety prior to the inspection exercise.

All the relevant stakeholders should be notified of a scheduled inspection in advance.

Safety measures of the following categories must be considered prior to commencement of any inspection:

- 1) Pre-inspection safety
- 2) Safety during inspection

1.9.2 Pre-inspection

Work safety measures must be planned in advance. The safety measures to keep in mind are:

- 1) Ensure that all tools, equipment and apparatus are available and in good working condition;
- 2) Ensure availability of necessary safety gear such as helmets, masks, safety harnesses, footwear, gloves etc.
- 3) Plan and arrange for signage, road closures and suitable traffic management procedures;

4) Identify and locate all the utilities existing at site such as electricity, water, sewerage, communications, and gas lines. If any risk is foreseen, relevant authorities should be informed for action in case of any emergencies;

1.9.3 Safety during inspection

Before commencing inspection at the site ensure that:

- 1) All personnel are wearing reflective/high visibility vests;
- 2) Inspectors know where to take refuge in case of emergency;
- 3) Location of unsafe areas and roads are identified and shared with all personnel;
- 4) Inspectors do not walk on or near the road, however, if absolutely necessary ensure that proper signage and traffic management measures are in place;
- 5) Inspectors walk in the direction facing oncoming traffic (the vehicles should not come from behind you).
- 6) All the lanes are clear before crossing the roads; and
- 7) Inspectors do not step backwards without checking their surroundings. In a noisy environment one may not hear the sound of approaching vehicles.
- 8) All inspections are carried out in well-ventilated and well-lit areas. If necessary, make prior arrangements for exhaust fans and artificial lighting; and
- 9) No one should be under the influence of alcohol or any medication which may impair alertness or cause drowsiness while working at site or operating any mechanical equipment.

1.9.4 Health and safety Checklist (safety gear, tools and equipment)

Items Description Normal Condition Special Condition* No. 1. Helmet ✓ ✓ Gloves 2. First Aid Kit 3. ✓ Safety boots and gum boots 4. 5. Safety Goggles ✓ 6. Reflector jackets 1 ✓ Reflective cones 7. 8. Reflective tapes Drones 9. 10. Flash lights Head lamp 11. ✓ 12. Ladder

Table 7 Health and safety checklist

No.	Items Description	Normal Condition	Special Condition*
13.	Life jackets		✓
14.	Dust masks		✓
15.	Smart phone with a functional inspection app	√	✓
16.	Pole camera	✓	✓
17.	Safety harness		✓
18.	Schmidt hammer	✓	✓
19.	Tape Measure	✓	✓
20.	Digital Camera	✓	✓
21.	Inspection Forms	✓	✓
22.	Panga/spade/slasher	✓	✓
23.	Wire brush	✓	✓
24.	Insect repellent	✓	✓
25.	Field note book	✓	✓
26.	Pen/pencil/eraser	✓	✓
27.	GPS gadget	✓	✓
28.	Power bank	✓	✓
29.	Umbrella/rain coat	✓	✓
30.	Ropes		✓
31.	Boat		✓
32.	Special inspection vehicle		✓
33.	Spanner	✓	✓
34.	Compass	✓	✓
35.	Measuring tools e.g. crack gauge, EDM	✓	✓

^{*} **Special Condition** refers to inspection of complex structures/environment (viaduct, sea bridges, bridge over rail, express ways, bridges crossing permanent rivers, Suspension/ floating bridge)

1.10 Condition Rating

1.10.1 Definition

Condition rating are supportable to evaluate of bridge soundness. For this session, explanation how to calculate weights assigned to the bridge components based on the inspections carried out on site to indicate the level of deterioration or damage to the bridge components and their elements. Most important point is condition rating should be objective and not subjective. In addition, inspection result should be same leveling each bridges condition rating even if inspect other inspector. Therefore, the system sets condition rating automatically. Condition rating provides information on the status of the bridge and is NOT a measure of the design deficiency. The rating is based on the observed, materials-related, physical condition of the components at the time of inspection.

Condition rating is important in Bridge Inspection as it provides the critical information that helps in planning for the necessary repairs and modifications on the bridge.

During inspection, condition rating is given depending on the type of inspection i.e Routine inspection or Initial inspection. Each inspection serves a different purpose. Whereas routine inspection serves the purpose of finding defects of elements of the bridge and evaluating their severity initial inspection is a detailed inspection that involves measurement, non-destructive test and use of equipment /technical gear to give the overall bridge condition.

The routine inspection purpose is to find any defects on the bridge elements within a short time say 10-30 minutes per bridge while the Initial inspection target is to find the overall bridge soundness through a careful inspection that may last from half-day to full-day per bridge.

1.10.2 Routine inspection condition rating

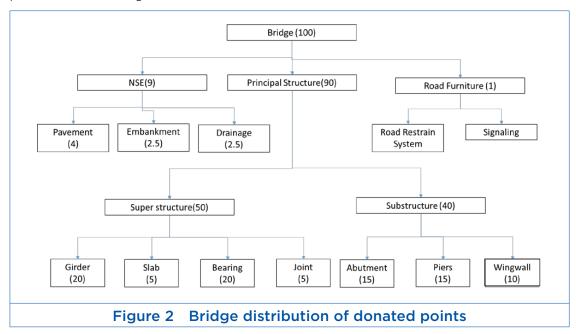
Routine inspection is a visual inspection conducted to provide information that helps in planning for the necessary bridge repairs, to inform the necessity of urgent action and to inform change of maintenance plan of a structure.

The check elements for this inspection are:

- 1. Road surface
- 2. Superstructure
- 3. Substructure
- 4. Bearings
- 5. Embankments

The inspector goes to site to observe the severity and the extent of the defects on the bridge, then determine the Defect Condition Level of individual defects on elements according to the BMS App.

The defects can be rated under 4 levels as shown below:


Defect Level	Description	Recommended action
N	No defect found or defect is minor	No action nor no monitoring required
DLI	Defects to observe. Defects do not compromise the structural integrity of the structure.	Monitoring of defects under ARBICS and Periodic inspectionPreventive measures
DLII	Defects need action. Clear defects may compromise the structural integrity of the structure if no action in few years is taken.	Detailed inspectionRemedial measures/ preventive measures
DL III	Defects need urgent action Clear defect that has significantly compromised the structural integrity of the structure/high risk.	 Emergency inspection Immediate action (including control of traffic)

1.10.3 Routine inspection calculation approach

A tree diagram is used to allocate points to various bridge components that are used to calculate the routine inspection rating. The tree diagram has the bridge at the top having 100% of the components donated point (DP) which is a summation of the distributed points of the elements making up the bridge.

The bridge is then subdivided into three major components i.e. Principal Structure, Non-Structural Elements (NSE) and Road Restrain Systems.

The three major components are then divided into sub-components and allocated donated points as shown in *Figure 2*.

Using a formula, the Member Donated Points (MDP) are calculated to get the member soundness. From this data collected, and by means of different algorithms, the bridge rating is obtained. This bridge rating enables to categorize the bridge state based on five defined ranges. From N-blue, O-green, D-yellow, SD1-orange to SD2-red.

The different colour ranges from blue to red enables to prioritize the maintenance of bridges as well as to determine the need for action for each bridge.

Routine Inspection					
Defects Level on Structure elements	Action/ Response time		Overall Condition Category		
N	80-100	Long – term action	N		
N, DL I	60-79	Mid-long-term action	0		
DL I, DL II	40-59	Mid-term action Require preventive measures	D		
DL II, DL III	20-39	Short –term action (Requires prompt action)	SD1		
DL III	0-19	Bridge collapsed/ Immediate urgent action (Require emergency measures)	SD2		

1.10.4 Categories of Soundness Evaluation for Initial inspection

An algorithm to obtain the overall bridge rating upon completion of initial inspection has been developed where the dependency relationship between constituent parts of the bridge causes the rating to be transferred from different parts of the structure in ascending order to give the final overall bridge rating.

Condition rating evaluates each element separately; however, other deficiencies may affect the condition if they are directly related e.g. instability of an approach embankment will affect the condition of the abutment but not of the superstructure

Indicators such as extension and severity, enabling the damage assessment, are collected for each of the damages existing in a certain member of the structure. From this data, and by means of different algorithms, the bridge rating is obtained. The bridge rating enables to categorize the bridge state of conservation based on five defined ranges. This numerical value enables to prioritize the state of maintenance of a set of bridges at a specific moment as well as to determine the need for action in each bridge.

This evaluation (both from the bridge and from each of the subcomponents in which it is divided) ranges from 0, 'collapsed bridge', to 100, 'bridge in perfect condition'.

Score/Rating	Damage description	Action/Response time
80-100:	Bridge with minor durability or functional damages.	Long-term action
60-79:	Bridge with moderate durability or functional damages.	Mid / long-term action
40-59:	Bridge with minor structural damages or extended durability or functional damages.	
20-39:	Bridge with moderate structural damages. Serious durability or functional damages.	Short-term action (Requires prompt action)
0-19:	Collapsed bridge or bridge with high-severity structural damages.	Immediate urgent action (Require emergency measures)

An evaluation between 80 and 100 means that the bridge deteriorations do not affect the structural capacity of any of its elements but only minor durability or functional deteriorations are observed, requiring a long-term repair or not requiring any action.

An evaluation between 60 and 79 means that the bridge deteriorations do not affect the structural capacity of some of its elements and only moderate durability or functional deteriorations are observed, requiring a mid-term or long-term repair.

An evaluation between 40 and 59 means that the bridge deteriorations have minor effects on the structural capacity of some of its elements and extended durability or functional damages requiring a Mid-term action and preventive measures.

An evaluation between 20 and 39 means that the bridge deteriorations have moderate structural damages of some of its elements and serious durability or functional damages requiring short-term and prompt action.

An evaluation between 0 and 19 means that the bridge deteriorations seriously affect the structural capacity of some of its elements, requiring urgent action.

1.11 Record

The result of bridge inspection inputs on site for Bridge Management System (BMS) by mobile. For the input method of BMS, refer to Bridge Principal Inspection Procedure Manual.

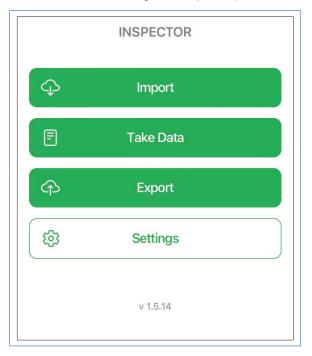


Figure 2 Bridge inspection inputs method

Table 8 Record of bridge inspection

No	Types of Bridge Inspection	Record method
1	Baseline inspection	BMS
2	Routine Inspection for PBC	PBC report form
3	Routine Inspection for ARBICS	BMS
4	Periodic Inspection	BMS
5	Special Inspection	BMS
6	Emergency Inspection	BMS

1.12 Repair Work

Appropriate measures shall be taken according to the Bridge Repair Manual.

2. ROUTINE INSPECTION FOR PBC

2.1 General

Performance based contracting (PBC) has been in use on road maintenance for several years in Kenya. Road Agencies have been implementing PBC at different scales. County Governments have also been involved in repair and maintenance of county roads since enactment of the Constitution 2010, and through the County Allocation of Revenue Bill 2019.

If well managed through costing and implementation, PBC provides means of continuously monitoring and documenting incidents and accidents on the roads. Simplified sheets are used for daily and monthly inspections for confirmation of payment due to the contractor based on the achieved level of service. Deductions are made on areas of non-compliance by the PBC contractor.

The purpose of this section of the Bridge Inspection Manual for ARBICS and PBC is to enhance the maintenance of bridges on the road network under PBC and roads being maintained under routine and periodic maintenance.

2.2 Methodology

Routine inspections shall be carried out in three phases during PBC implementation:

- 1. Initial Inspection
- 2. Daily Inspection
- 3. Final Inspection

1. Initial Inspection

The purpose of the initial inspection is for the contractor to grasp the conditions of the bridges and to understand the scope of work required during the PBC implementation. The items to be repaired under the scope of PBC are to be noted at this time. The defects which are outside the scope of works and cannot be repaired under PBC shall be communicated within 24 hours to the Employer.

2. Daily Inspection

The purpose of the daily inspection is to ensure that the condition of the bridge is monitored for achievement of service levels and determine effectiveness of intervention measures.

The daily inspection will be general. It is important to ensure that the critical elements of the bridges are inspected.

3. Final Inspection

The final inspection will be done at the end of the PBC project. The inventory and condition of the bridge(s) are updated in the BMS. The information that the next PBC contract needs to address will be noted. This is in the spirit of improving the service level and longevity of the bridge.

2.3 Service Levels

Service levels are the minimum requirements that the contractor needs to maintain for the optimal functioning of the road asset. If the levels fall below the set service levels, the contractor will not receive full payment and will be penalized depending on the reduction weight set at the start of the contract.

The check items for structures to be inspected are highlighted in *Table 9*.

Table 9 Bridge maintenance item under PBC

No	Check Element	Defect	Service Level	
1	Concrete bridges	Structural deterioration	Concrete bridges must be in good condition and fully functional.	
2	Box culvert	Obstruction due to sediments, soils and washed materials	Must be free flowing at all times.	
3	Steel bridges	Structural deterioration, leaking structures	The steel bridges (e.g., Bridge and pedestrian bridge) must be clean, in good condition, free of corrosion and fully functional.	
4	Bridge expansion joints	Debris impeding joint movement/damaging the joint	All expansion joints must be clean and in good condition and fully functional.	
5	Guardrail / Pedestrian Rail	Deformed / Missing guardrails	Guardrails must be in good condition and fully functional.	
6	Riverbeds	Obstructions due to debris or inappropriate vegetation	Riverbeds must be maintained to ensure free flow of water under the bridge and up to 50 meters upstream and downstream of the river at all times.	
7	Riverbeds	Eroded river beds	Erosion around bridge abutments and piers must be controlled with all reasonable measures at all times.	

Note:

1. For defects details refer to Bridge Damage Catalogue.

2.4 Service Level Inspection

Service level inspection is carried out at the end of every month jointly by the Employer and Contractor to ascertain that PBC works were carried out as specified in the contract. Based on the achieved level of service, the monthly payment is made after making the deductions for non-compliance.

Depending on the type of PBC contract under consideration, off-carriageway works or on-carriageway works or a combination of both, the scope of works the contractor should fulfil in the contract is specified.

For off-carriageway PBC works, the contractor is tasked with ensuring the off-carriageway is clean, the vegetation within the right of way is controlled as specified and that the drains and bridges are clean to ensure free flow. The off-carriageway items are mainly labour based.

For on-carriageway PBC works, the contractor is expected to repair specific items of the carriageway for example, guardrails, potholes and concrete structures. The target items are normally listed in the special specifications of the tender document.

For both the off and on carriageway PBC works, the scope will encompass the activities as explained above for off and on carriageway. The entire scope will be as listed in the special specifications of the tender document.

The road and bridges should be considered as one item during inspection. Other than the service criteria of maintenance of bridges, the contractor should, with the same zeal, focus on the following service criteria:

- i. Passability.
- ii. Smooth and safe traffic flow.
- iii. Visibility.
- iv. Traffic information.
- v. Drainage capability.
- vi. Vegetation control.
- vii. Slope stability.
- viii. Visual intrusion.
- ix. Accessibility for footbridges.

The above items, if left unattended, may contribute to damage to the bridges.

Appendix 2 shows the performance standards for the four service levels established for the road network in Kenya depending on the traffic volume and road type. The service levels are:

- i. Paved high (Annual Average Daily Traffic (AADT) more than 20,000 vpd)
- ii. Paved standard (AADT less than 20,000 vpd)
- iii. Unpaved high (AADT more than 500 vpd)
- iv. Unpaved standard (AADT less than 500 vpd)

2.5 Inspection Report

It is important for the contractor regardless of the type of PBC being implemented to monitor the condition of the bridges in the contracted road section and notify the Engineer any structural damage within twenty-four (24) hours after detection.

For a detailed inspection report, you can use the Inspection Form in Appendix 3 in this manual.

3 ROUTINE INSPECTION FOR ARBICS

3.1 General

Annual Road and Bridge Inventory Condition Survey (ARBICS) is an annual data collection exercise whose objective is to update road and bridge inventory and condition database. During the survey, bridges are inspected using the BMS tool to timely monitor their condition. For purposes of differentiating the annual inspection of bridges from the well-known exercise on the roads, the annual bridge inspection shall be referred to as ARBICS.

3.2 Methodology

The ARBICS inspection shall be conducted using the BMS application. The BMS database consists of the Inventory and Inspection information.

3.3 Inspection Equipment

The list in *Table 10* consists of the recommended safety gear, tools and equipment for inspection:

Table 10 Tools and equipment

Tools & Equipment	Safety gear
Tape measure	Long sleeve shirt
Camera (Tablets and smartphones can be substituted)	Utility belt
Tablet/Smartphone (installed BMS application)	Reflector Jacket
Test hammer	Safety gloves
Ladder	Safety boots
Crack scale	Safety harness
Crack gauge	Safety cones
Pole Camera	Warning signs
Drone	Helmet
Chalk	First Aid Kit
Schmidt Hammer and Test Ambil	
Monocular/Binoculars	

Together with the tools & equipment, the Inspector should also carry the Bridge Inspection Handbook for reference during the field work.

3.4 Bridge Inventory

Inspections are conducted on various bridges for various objectives. Before starting the ARBICS inspection, it is important to grasp and study the target bridge inventory data for the particular bridge. The bridge inventory data can be obtained from the Bridge Management System database.

3.5 Inspection Items

The key inspection items for ARBICS are shown in *Table 11.* Additionally, photographs are taken and stored with inspection records.

Table 11 Inspection items for ARBICS

Category	Check E	lement	Check Item
Road Surface	Pavement		Siltation
			Pothole, Rut
			Crack
			Others
	Bridge Railing/Guardrail/Curb		Deformation
			Faulty lighting
			Missing Parts
			Others
	Expansion Joint		Deformation
			Misalignment
			Abnormal Sound
			Siltation
			Others
	Drainage System	1	Clogging
			Broken
		T	Others
Superstructure	re Superstructure	Steel	Surface alteration
			Corrosion
			Deformation
			Crack
			Missing Parts
			Missing bolts, rivets, anchors
			Rupture
			Others
		Concrete	Honeycomb
			Spalling
			Spalling concrete showing reinforcing rods
			Crack
			Precipitate (Free lime, Rust fluid)
			Others
		Other	Corrosion
		(Masonry, Wooden, others)	Deformation
			Misalignment
			Crack
			Missing Parts
			Others

Category	Check E	lement	Check Item
	Slab	Steel	Corrosion
			Deformation
			Crack
			Others
		Concrete	Honeycomb
			Spalling
			Spalling concrete showing reinforcing rods
			Crack
			Precipitate (Free lime, Rust fluid)
			Others
		Wooden	Corrosion-Rotting
			Deformation
			Crack
			Missing Parts
			Others
Substructure	Abutment	Concrete	Honeycomb
			Deformation (leaning)
			Spalling
			Spalling concrete showing reinforcing rods
			Crack
			Subsidence
			Scouring
			Others
		Other (Masonry, Wooden, others)	Corrosion
			Deformation (leaning)
			Crack
			Subsidence
			Scouring
			Others
	Wing wall	Concrete	Honeycomb
			Deformation (leaning)
			Spalling
			Spalling concrete showing reinforcing rods
			Crack
			Subsidence
			Scouring
			Others
		Other	Corrosion
		(Masonry, Wooden, others)	Deformation (leaning)
			Crack
			Subsidence
			Scouring
			Others

Category	Check E	lement	Check Item
	Pier	Concrete	Honeycomb
			Deformation (leaning)
			Spalling
			Spalling concrete showing reinforcing rods
			Crack
			Subsidence
			Scouring
			Others
		Other	Corrosion
		(Masonry,	Deformation (leaning)
		Wooden,	Crack
		others)	Subsidence
			Scouring
			Others
Bearings	Main body	Steel	Corrosion
			Deformation (leaning)
			Missing Parts
			Rupture
			Others
		Rubber	Crack
			Deformation
			Rubber breaks
			Others
	Around bearing		Corrosion
			Deformation
			Stagnant water
			Sedimentation
			Others
Embankments			Scouring
			Slope failure
			Others

3.6 Evaluation of Defects

See Appendix 1.

3.7 Inspection Report

See Appendix 4.

3.8 Bridge Inspection Key Points for ARBICS

3.8.1 General Areas to Check during Annual Inspection

Table 12 General inspection checklist

Mair	Parts	Viewpoints
(1)	General	 Check the entire bridge for any deformations/defects (signs of settlement of abutments, piers and approach slab, cracking, excessive deflection of gird- ers, potholes).
		■ Is there any abnormal sound, especially during passage of heavy vehicles?
		What is the magnitude of vibration when vehicles are passing over?

3.8.2 Key Points of Inspection for a Concrete Bridge

3.8.2.1 Concrete Girder

The common defects on the concrete girder to check during Annual Inspection are shown in *Table 13*

Table 13 Concrete girder defects

Main Parts		Observations/Considerations
(1)	Girder-End	 There is often high humidity or silt deposit in narrow space. Note: It may be difficult to inspect the bottom surface of the girder or the top surface of substructure in case of lower bearing height. Water leakage may occur through the expansion joint. Cracks may develop because bearings are subjected to high stress.
(2)	Girder Intermediate Support	 Corrosion of steel rebars may occur under extreme condition such as high humidity. Check for silt deposit in narrow spaces. Cracks may develop because of the girder support conditions which are subjected to high stress.
(3)	Girder Centre	 Experiences high stress concentration that may lead to failure such as cracks, collapse if members develop excessive defects. Corrosion and discoloration with rust fluid may be observed on the surface.
(4)	Quarter Span	 Shear cracks may develop because of inadequate rebars and/or excessive loading.
(5)	Construction Joint	 Cracks may develop at the construction joint boundaries due to lack of continuity. Water leakage or free lime precipitation may be observed if there is penetrating crack.
(6)	PC Steel wire	 Noticeable corrosion in pre-stressed concrete (PC) steel wire may result in fracture of the steel if there is no grout-filling. PC steel may be visible due to release of accumulated tension if
		 Note: Corrosion or partial loss of strength of steel inside concrete may be difficult to identify by visual inspection. Presence of water in PC steel duct may be the cause of water leakage from around PC steel anchorage or filling concrete or lime precipitation.
(7)	Anchorage	 Cracks may develop due to working stress concentration. Water may seep through the upper joint to PC steel causing corrosion. Note: The deterioration under the pavement cannot be seen by visual inspection. It is therefore important to understand the signs of corrosion inside the concrete from the deterioration of the concrete in and around the anchorage. Further tests can be recommended as deemed necessary.

Main	Parts	Observations/Considerations
(8)	Cut-out / Gerber	 Cracks may develop due to stress concentration at the cut-out part of anchorage girder side due to cross section changing drastically (Gerber-hinged or cut-out parts)

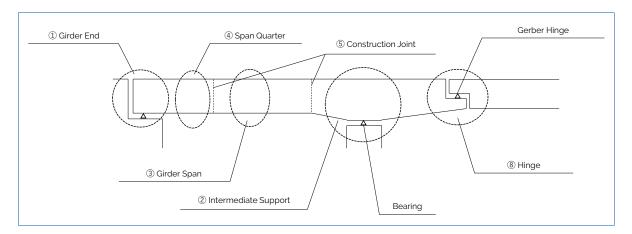


Figure 3 Concrete girder

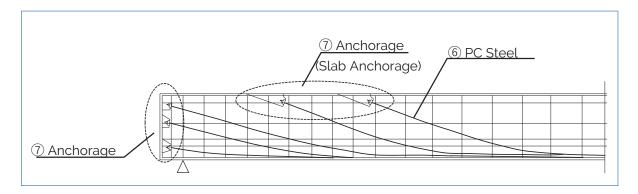


Figure 4 PC girder steel arrangement

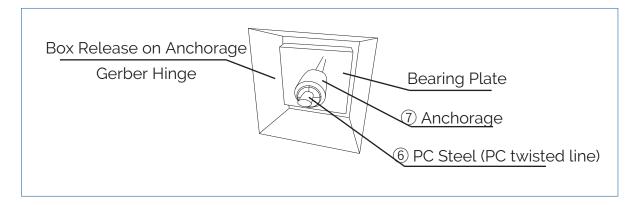


Figure 5 Anchorage on PC steel

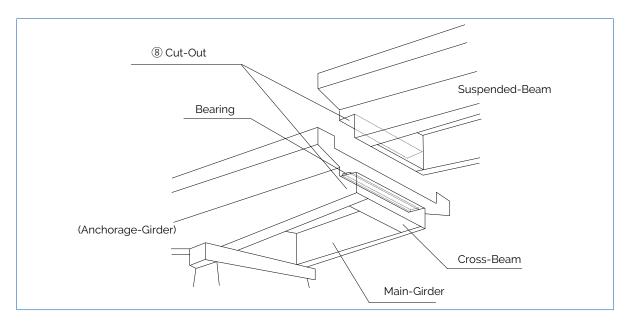


Figure 6 Gerber section

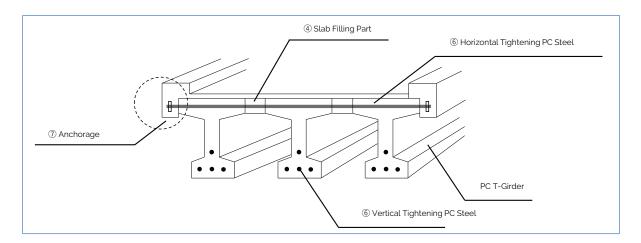


Figure 7 PC T-Girder bridge

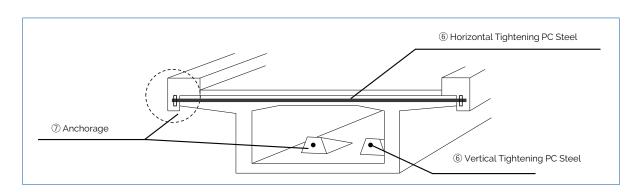


Figure 8 PC box girder bridge

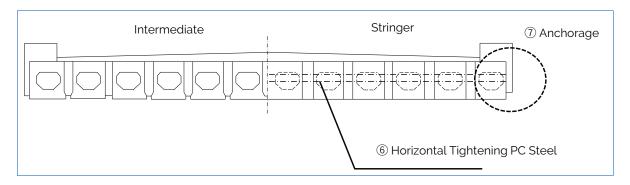


Figure 9 PC pre-tension hollow floor slab bridge

3.8.2.2 Concrete Slab Bridge

The slab bridge has no beams and therefore the points to be targeted for inspection are different from those of the girder bridge. This is because the slab bridge is composed of concrete material only and has no irregularities in the bottom surface unlike the case of girder bridge.

However, it is necessary to check the condition if slab bridge has a hollow cross section.

Common defects to check on a Concrete Slab Bridge during inspection are shown in Table 14

Table 14 Common defects on a concrete slab bridge

Main	Parts	Observations / Considerations
(1)	Bottom	Cracks may develop due to repeated loading.
	and Top Surface on Concrete	• Lime precipitation or rust fluid may occur due to water seepage from upper surface of the slab.
	Slab	It is susceptible to impact force from vehicle loads due to the influence of road surface irregularities and expansion joint.
		 Spalling of concrete cover, peeling and rebar exposure may be caused by fatigue cracks, neutralization and salt damage.
		 Partial fall off of slab concrete may be due to deterioration of concrete if there is fatigue cracks or infiltration of rainwater to slab.
		 Noticeable deterioration on the upper side of concrete deck slab may be identified in case there is pavement depression or tracks of cement spouting.
		 Damages in the concrete may not be observed from the surface if steel plates, carbon fibre sheets, or peeling prevention agent are installed under deck slab.
		 Deterioration in deck slab or joint parts of repair materials may proceed rapidly due to infiltration of water. The extent of deterioration may spread widely if the repair/reinforcement materials (such as steel plates, carbon fibre sheets, or peeling prevention agent) are installed under the deck slab.

Main	Parts	Observations / Considerations
(2)	Pavement	Damages to pavement may be caused by deformation of concrete slab.
		 Poorly installed expansion joint and uneven settlement of any part of the bridge may cause level difference thus, water ponding.
(3)	Girder-End	Girder-end may be damaged by impact force from passing vehicle.
(4)	Slab Filling Part of	Lime precipitation or rust fluid may be caused by water ingress from the upper slab surface through the construction joint.
	Concrete T-Girder Bridge	 Filling concrete may fall off due to the loss of adhesion in the construction joint between the T-girder and the slab filling parts (see figure 11).
(5)	Drainage facilities	Drainage may leak water and lead to deterioration
(6)	Previous Repair/	 Deterioration in the concrete may not be observed from the surface if repair/reinforcing materials are installed.
	Reinforcing Material	 Deterioration in the interface between base material and repair/ reinforcing materials may proceed rapidly due to ingress of water. The extent of deterioration may spread widely if the repair/reinforcement materials (such as steel plates, carbon fibre sheets, or peeling prevention agent) are installed.

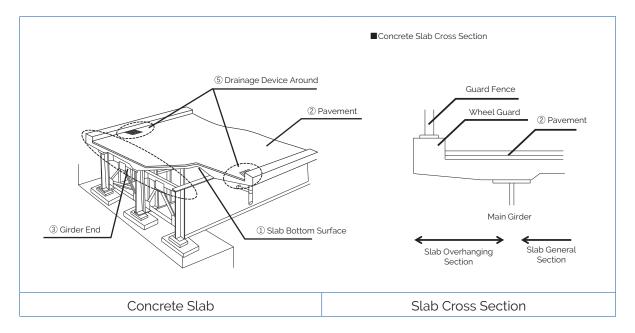


Figure 10 Concrete slab

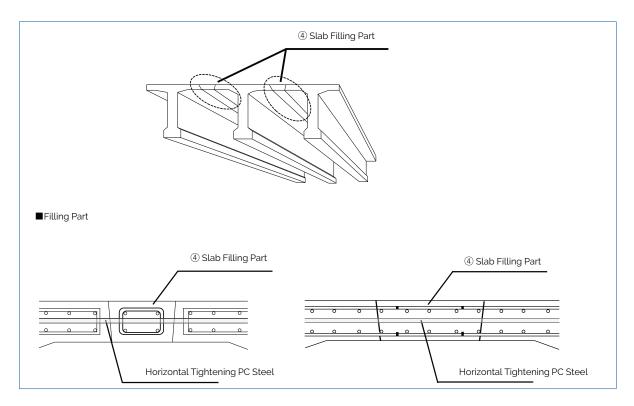


Figure 11 Example of filling part and rebar arrangement method

3.8.3 Key Points of Inspection for Steel Bridge

Common defects to check on a steel bridge during inspection are shown in Table 15.

Table 15 Steel bridge viewpoint

Main Parts	Observations / Considerations
1. Girder-End	 Localized and severe corrosion may occur under extreme condition such as high humidity or silt deposit in narrow space.
	 Water leakage from expansion joint shall be checked.
	It is susceptible to impact force from vehicle loads due to the influence of road surface irregularities/unevenness and expansion joint.
2. Intermediate Support	 Localized and severe corrosion may occur under extreme condition such as high humidity or silt deposit in narrow spaces.
	 As with girder ends, they are susceptible to high stresses, which can lead to cracks in the welds and damage such as deformation by differential movements.
3. Girder Centre	 Experiences high stress concentration that may lead to failure such as cracks, collapse if members develop excessive defects.

Main Parts	Observations / Considerations
4. Joint	 Bolted joints are prone to accumulation of rainwater and dust such as at splicing joints, gusset plate joints, which may lead to corrosion.
	 Bolted joints are areas where the coating film is easily damaged at the corners and edges, and where it is difficult to secure the coating film thickness. Therefore, corrosion prevention function is compromised and corrosion progresses.
	 Welded joints are prone to cracks.
	Missing/vandalized parts
5. Panel Points of Main Girder	 Localized and severe corrosion may occur under extreme condition such as high humidity or silt deposit in narrow spaces.
	 Cracks and deformations may occur at gusset plates.
	Note: Panel points are important parts that affect the durability of the bridge.
6. Mounting point of accessories /	 Depending on the connection structure of the appurtenances, it may be prone to corrosion due to stagnant water.
appurtenances	 The vibration of the appurtenances may affect the main structure of the bridge. Loosening of bolts and cracks may occur in the main structural members.
	• If the connecting structure on the appurtenances side is damaged by corrosion or cracks, it may cause damage to third parties by falling or collapsing.
7. Drainage facilities	 Corrosion may occur due to leakage or splashing of rainwater caused by faulty or improperly positioned drainage facilities.
	 Siltation and/or blockage may occur on drainage facilities causing water ponding.
8. Overpass bridge	• Structural damage to bridge elements may be caused by accidental impact from vehicles passing under or over the bridge.
9. Inside Box Girder or Steel Piers	 Water leakage from a manhole or drainage pipes may lead to water stagnation and corrosion.

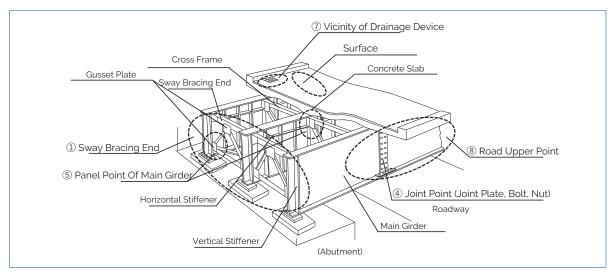


Figure 12 Steel plate girder bridge

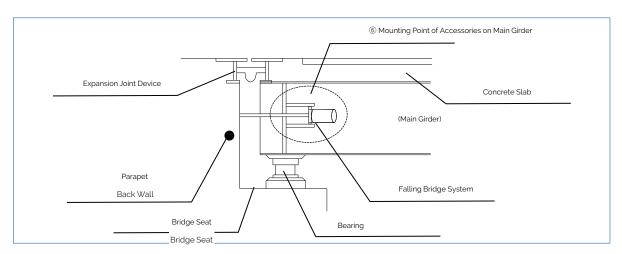


Figure 13 Girder end

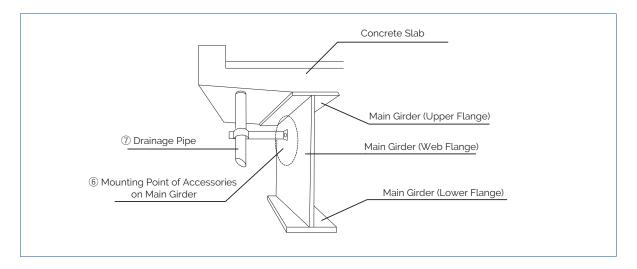


Figure 14 Vicinity of drainage device

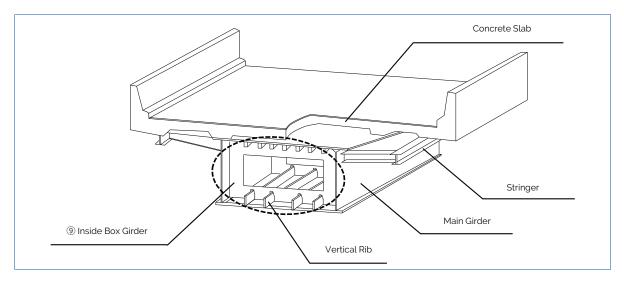


Figure 15 Steel box girder bridge

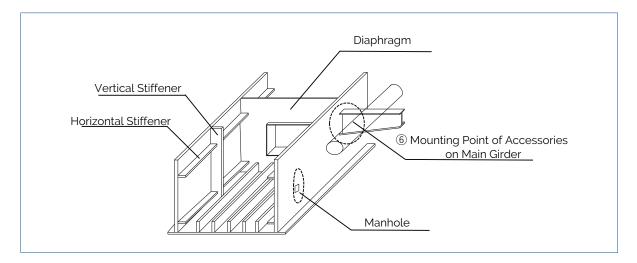


Figure 16 Inside box girder

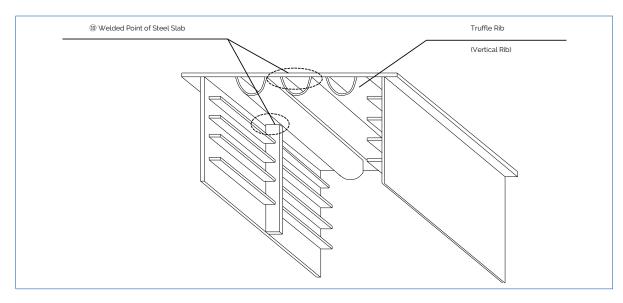


Figure 17 Steel slab

3.8.4 Key Points of Inspection for Substructure

Common defects to check on a Substructure during Inspection are shown in *Table 16*.

Table 16 Substructure

Main	Parts	Observations / Considerations
(1)	Abutment	Parts exposed to weather elements may develop cracks.
		Lime precipitation or rust fluid may occur due to water seepage from approach of abutment.
		Subsidence, inclination, or movement may be generated due to active pressure from backfill material.
		 Abutment on slope may be unstable due to scour or slippage of the ground.
(2)	Pier	 Cantilever part that is exposed to extreme weather conditions may develop defects.
		 Upper side of cantilever part may develop cracks because the section is exposed to high stress.
		Cracks may develop around bearings.
		 Scour may occur on the pier wall due to lack of adequate protection works.
(3)	Foundation and piles	 Due to the structural characteristics of spread foundations and pile cap/bent, when scouring occurs, the deformation is likely to lead to instability (settlement, tilt, and general or local buckling).
		 Scour may occur on the foundation of the pier due to lack of adequate protection works. The extent of scouring tends to increase with the width of resistance to water flow.
		 Impact from water borne debris and boulders to piles and pile caps / bents may lead to structural damage and corrosion in the case of steel foundations.
		 Submerged or partially submerged areas of steel piles/casings may corrode depending on conditions. It is advisable to periodically monitor the condition of the protective coating against damage.
		 Check out for damage to corrosion protection caused by mooring (anchoring) to pile caps / bents, and corrosion from contact with different metals.
		Note 1: The condition of riverbed and scouring around pier can be often inspected by camera.
		Note 2: Condition of members or riverbed can be inspected closely and directly in dry season.

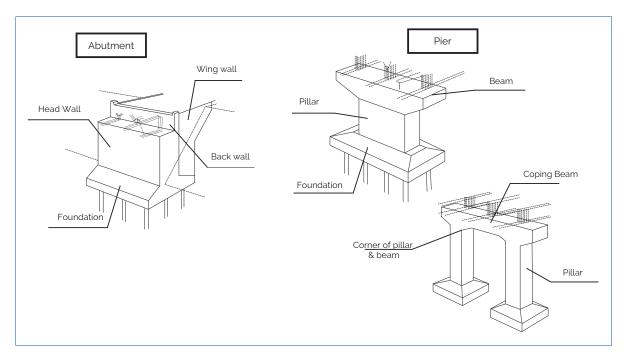


Figure 18: Abutment and pier

3.8.5 Key Points of Inspection for Bearing

Common defects to check on the bearing during inspection are shown in Table 17.

Table 17 Bearings

Main	Parts	Observations / Considerations
(1)	Bearing	 It is in a narrow space, with predominantly severe corrosive environment, such as high humidity and silt accumulation leading to corrosion.
		 Due to high stress in bearings, cracks, fractures, and defects are likely to occur.
		 Abnormal gap is likely to occur due to excessive movement of the superstructure or the substructure.
		Bearings are affected by the impact force from vehicles passing on bumps or expansion joint.
(2)	Set bolt	These are bolts that are used to restrain the horizontal displacement of the bearings.
		 Due to high stress, defects e.g. fractures and deformations are likely to occur.
		The protective coating is easily damaged at the bolt edge. This lowers the corrosion protection function.

Main Parts		Observations / Considerations			
(3)	Anchor bolt	 Due to high stress, defects e.g. fractures and deformations are likely to occur. 			
		The protective coating is easily damaged at bolts and nuts. This lowers the corrosion protection function.			
(4)	Shoe Seat	This is a high stress part, where cracks and other defects are likely to occur.			
		 Welded parts at shoe seat on steel pier are prone to fatigue cracking due to fulcrum reaction forces with impact. 			
(5)	Bearing Support Seat	This is a part prone to high stress, cracks and other defects are likely to occur.			
(6)	Horizontal clearance at the end of the girder	Abnormal horizontal clearance between the girder end and back wall of abutment is likely to occur due to excessive movement of the superstructure or the substructure.			

3.8.6 Key Points of Inspection for Box Culvert / Arch Culvert

Common defects to check on box culverts/ arch culverts/ARMCO culverts during inspection are shown in *Table 18*.

Table 18 Box culvert / Arch culvert /ARMCO culverts

Main Parts		Observations / Considerations			
(1) External		 Presence or absence of loose fill material. 			
		Scouring along the edges of the bridge.			
 Absence/inadequate/defective pro outlet. 		, issured, indeequate, defective protection works at eather inter-and			
(2)	Internal	Presence or absence of water leakage through cracks.			
		Check the inside of the box or the bottom slab for damage that may interfere with the flow of water.			
		 Presence or absence of longitudinal and transverse cracks on concrete surface. 			
(3)	Surface	 Unevenness of the road surface. 			
(4)	ARMCO	 Replace all ARMCO Culverts with 1200 mm diameter (minimum) concrete pipe culverts informed by the hydrological study of the location. 			

APPENDIX 1: GUIDELINE FOR SOUNDNESS DIAGNOSIS FOR ROUTINE INSPECTION FOR ARBICS

Guideline for Soundness Diagnosis

This is a reference for diagnosing the soundness of each member in accordance with the Bridge Inspection Manual for ARBICS and PBC. The factors to be considered in the determination of typical deteriorations are described hereinafter.

In addition, it is difficult to quantitatively judge the condition of each member because it depends on the bridge structural type and construction conditions. The condition of the target bridge should be referenced on the previous inspection. It is necessary to determine the appropriate classification of soundness diagnosis.

This section presents reference cases for some of the deteriorations as shown below. For more detailed deteriorations refer to Damage Catalog

Steel Member	Concrete Member	Others
Corrosion	Crack	Damage of bearing
Crack	Slab Crack	Others
Rupture	Others	
Others		

Table A1:.1: Below outlines the condition that lead to assignment of the various damage levels for Corrosion on a steel member

Damage of Steel Member	Corrosion	Damage Level N-III	
Darriage of Steet Member	0011031011	Darriage Level 11	

Damage Level N	Below 10% of the element's surface is affected (there is rusting, but no section loss is found). In connections, below 10% of the length (welding) or the total number of the connection bolts or rivets is affected (there is rusting, but no section loss is found).
	There is no hindrance to the function of the bridge, but it is desirable to take measures from the viewpoint of preventive maintenance. (Preventive Maintenance Stage)
Damage Level I	Between 10% and 50% of the element's surface is affected (there is rusting, but no section loss is found). In connections, between 10% and 50% of the length (welding) is affected or the total number of connection bolts or rivets is affected (there is rusting, but no section loss is found).
	Remedial measures should be taken in early stage, because the function of the bridge may be hindered. (Early Measures Stage)
Damage Level II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness) or when over 50% of the length is affected (welding) or total number of the connection bolts or rivets is affected. Section loss is found but the element's structural or functional behaviour is not hampered.
	A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Prompt Measures Stage)
Damage Level III	The element's surface is affected. There is section loss (over 20% of the thickness) preventing the element's proper structural or functional behaviour.
	A condition in which partial or total failure of the structure has occurred or is inevitable and immediate measures should be taken. (Emergency Measures Stage)

Damage of Steel Member Corrosion 1/5

Severity: I

There is no hindrance to the function of the bridge, but it is desirable to take measures from the viewpoint of preventive maintenance. (Early Maintenance Stage)

Although the thickness of the steel plate has hardly decreased, the corrosion-resistant coating is deteriorating over a wide area, and it is expected that serious corrosion will spread to the whole bridge if left unattended.

There is little adverse effect on the load bearing capacity of the entire bridge, but significant corrosion is progressing locally, and if left unattended, the adverse effect can be expected to spread.

Although it is an atmospheric corrosion weathering steel, the thickness of the main member has not been remarkably reduced, but apparent abnormal corrosion is observed, and the condition cannot deteriorate any further even if left unattended.

Although it is a painted material, the thickness of the main material has not been significantly reduced, but if left unattended, there is a possibility of rapid deterioration of the coating and spread of corrosion due to water leakage.

Remarks

- The corrosion rate varies greatly depending on the corrosive environment (adverse effects due to salt damage, rainwater retention, water leakage, frequency of high humidity, etc.)
- This is the case when it is clearly rational to take preventive maintenance measures before the next periodic inspection.

Damage of Steel Member Corrosion 2/5

Severity: II

Remedial measures should be taken in early stage, because the function of the bridge may be hindered. (Prompt Measures Stage)

Significant corrosion has occurred in the main member web and lower flange, a clear reduction in plate thickness can be confirmed locally, and structural safety may be impaired if a section loss occurs.

The main girder near the bearing and support point has significant corrosion with a clear reduction in thickness.

An atmospheric corrosion weathering steel with apparent abnormal corrosion, resulting in a wide plate thickness reduction.

Severe corrosion has spread to a wide range of main member due to water leaks and water retention.

Remarks

- Corrosion may reduce the plate thickness to a certain extent or more, or even locally, if a cross-section defect occurs at an important portion of the main member, the load bearing capacity of the member may be reduced.
- If water leakage or water retention occurs in the girder or inside the box cross-section member, severe corrosion may occur over a wide area. In particular, infiltration water containing an antifreezing agent accelerates the corrosion drastically.

Damage of Steel Member

Corrosion

3/5

Severity: III

A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Emergency Measures Stage)

There is a clear cross-section loss due to corrosion at the position important for the structure such as the receiving beam of the Gerber/cantilever hinged bridge structure.

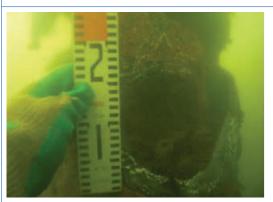
Regarding truss bridges and arch bridges, the main members, such as diagonal members, columns, suspension members, and chord members, have obvious cross-section loss and significant plate thickness reduction (Sudden rupture may also occur due to wheel load of large vehicles).

Significant reduction in plate thickness has occurred in a wide range of main members (The required load capacity may already be lost).

Clear cross-section defects have occurred at stress concentration areas such as support areas (There is a possibility of collapse due to large external force such as earthquake).

Remarks

• In the case of corrosion, the load bearing capacity has already decreased depending on the condition of reduction of plate thickness and cross-section loss, and the required performance cannot be exhibited against the action of large external loads such as wheel loads and earthquakes.


Damage of Steel Member		Corrosion	4/5
Severity: III A condit		ion in which the function of the bridge is imp	aired or is very likely to
occur, a		nd urgent measures should be taken. (Emerg	gency Measures Stage)

Steel pile-bent piers have corrosion holes and a clear decrease in wall thickness (It may suddenly buckle due to effects of axial force and bending moment).

Cross-section loss due to corrosion of steel pilebent pier (It may suddenly buckle due to effects of axial force and bending moment).

Corrosion locally progresses at steel pile-bent piers in submerged areas of low tide affected rivers (It may suddenly buckle due to effects of axial force and bending moment).

Remarks

• The pile-bent pier member in the underwater part may be damaged due to local corrosion, which may make the bridge uneasy with respect to the axial compressive force.

Damage of Steel Member

Corrosion

5/5

Special

The cases in the table below require detailed condition understanding.

It is suspected that significant corrosion has progressed inside the embedded parts and members which cannot be visually confirmed (Corrosion may progress inside the embedding part to the point of rupture).

Clear abnormal corrosion is observed in atmospheric corrosion weathering steel (The impact on load-bearing capacity may not be estimated unless detailed conditions such as thickness measurement are grasped)

It is suspected that significant corrosion may have occurred due to water retention or water leakage in parts that are not easily visible, such as inside the girder (Significant corrosion may occur inside the girder, and serious adverse effects may occur).

It is suspected that significant corrosion may have progressed inside the parts that cannot be visually observed (The load bearing capacity of the member may be reduced due to the reduction of the plate thickness from the inside).

Remarks

Corrosion progresses rapidly depending on environmental conditions, so if significant corrosion
is suspected inside the member or in the embedded part where the external appearance
cannot be visually confirmed, it is necessary to understand the cause by grasping the detailed
state. It may develop rapidly if leak or water retention is the cause.

Table A1.2 below outlines the condition that lead to assignment of the various damage levels for crack in a steel member

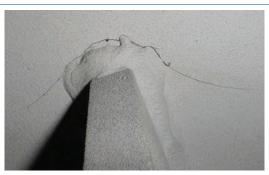
Damage of Steel Member		Crack	Damage Level N-III
Damage Level N	No cracks are identified on the steel structure or its members.		
		no hindrance to the function of the asures from the viewpoint of preven	
	(Prevent	ive Maintenance Stage)	
Damage Level I	Cracks are identified in members (cross frame, lateral bracing are unlikely to reach the main members immediately. The crack continue to grow in the future.		· ·
		al measures should be taken in earl idge may be hindered.	y stage, because the function
	(Early M	easures Stage)	
Damage Level II	Identified cracks have extended to main members of steel piers, trough ribs of the steel plate floor, leads to depression and pavement damage.		ite floor) further propagation
	A condition in which the function likely to occur, and urgent measure		, ,
	(Prompt	Measures Stage)	
Damage Level III	Identified cracks have extended to main members (deck plate, corners of steel piers, trough ribs of the steel plate floor, gerber girder, girder flange, girder web, web of cross girders) and welded sections and may lead to breakage or collapse.		
		ion in which partial or total failure o vitable and immediate measures s	
	(Emerge	ncy Measures Stage).	

Damage of Steel Me	mber	Crack	1/4
		no hindrance to the function of the bridgeasures from the viewpoint of preventiv	
		ance Stage)	

Even if it progresses, it is unlikely that the main member will be destroyed immediately, but it is highly possible that damage will continue to progress.

Even if it progresses, it is unlikely that the crack will reach the main member immediately, but it is expected that the crack will continue to grow in the future.

Even if it progresses, it is unlikely that the crack will reach the main member immediately, but it is expected that the crack will continue to grow in the future.



Clear cracks occur in the cross frame and the lateral bracing, and the crack propagates from the position and direction, it may not reach the main member immediately, but if left unattended, the member may break.

Remarks

 Depending on the location of the crack, it is considered unlikely that the crack will immediately spread to the main member and the bridge will be in a dangerous state. However, if the cracks are certainly expected to grow, it may be difficult to repair the cracks or the repair may become large-scale after the crack extended

Damage of Steel Member		Crack	2/4
Soverity: II	Domod	ial massures should be taken in early s	taga bagaysa tha
		ial measures should be taken in early s n of the bridge may be hindered.	tage, because the
(Prompt		Measures Stage)	

An obvious crack extends to the deck plate of the steel plate floor, and if it further develops, it is expected to lead to pavement depression and pavement damage.

An obvious crack extends to the deck plate of the steel plate floor, and if it further develops, it is expected to lead to pavement depression and pavement damage.

Clear cracks have occurred in the corners of the steel pier. Further progress is expected to have serious adverse effects on girders and piers (Depending on the location, it often progresses to Severity: Very high).

Clear cracks extend to the trough ribs of the steel plate floor, and further propagation is expected to lead to road depression and pavement damage.

Remarks

• Cracks may grow suddenly and significantly and it is usually impossible to predict where they will grow in a continuous area. Therefore, cracks may develop in the main member or may spread to the main member. In that case, it is necessary to take measures early.

Damage of Steel Member Crack 3/4

Severity: III

A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Emergency Measures Stage)

Gerber girder plate is cracked regardless of size.

Regardless of size, there are obvious cracks in the column members, suspension members, and chord members of arch bridges and truss bridges.

There is a clear crack extending from the main girder flange to the web.

Large cracks are growing in the web of main girders and cross girders.

Remarks

It is difficult to predict the progress (progress time and degree of progress) of a crack in a part
that is subjected to repeated stress, considering the size and direction of the crack, and when
the performance of the main member is seriously affected, it may be possible to immediately
determine that urgent measures such as traffic restrictions and accident prevention measures
at the time of crack development should be taken

Damage of Steel Member

Crack

4/4

Special

The cases in the table below require detailed condition understanding.

Although there is a clear coating film crack near the weld line, the entire crack cannot be confirmed from the appearance. (In order to make a reliable judgment of the presence or absence of cracks, it is necessary to remove the coating film and have a specialist technician grasp the detailed conditions such as non-destructive inspection and shaving.)

Although there are cracks and rusting in the coating that may have serious cracks in the steel plate floor, it cannot be determined only by visual inspection.

A crack has occurred or is suspected to have occurred at a corner of a steel bridge pier or a member intersection of a rigid frame bridge, and there have been other similar cracks at member intersections.

There is rust at the lower end of the pillars of the arch bridge, and on the other hand, it is a place where fatigue cracks are prone to occur, so the possibility of fatigue cracks cannot be denied.

Remarks

• It is often the case that the cracks in steel members cannot be confirmed entirely by visual inspection due to coating or rust. In that case, it is necessary to remove the coating film and rust, and to grasp the detailed state by nondestructive inspection such as magnetic particle inspection or ultrasonic inspection

Table A1.3 below outlines the condition that lead to assignment of the various damage levels for rupture in a steel member

Damage of Steel Mer	nber	Rupture	Damage Level N-III	
Damage Level N	No rupture on any members of the structure.			
		No new rupture has occurred on members where rupture was repaired with steel plate or other means.		
	Soun	d Condition.		
	(Prev	entive Maintenance Stage)		
Damage Level I	The rupture has occurred in members that have little effect on the load bearing capacity of the structure. New rupture has occurred o members where rupture was repaired with steel plate or other means.		e. New rupture has occurred on	
		Remedial measures should be taken in early stage, because the function of the bridge may be hindered.		
	(Early	(Early Measures Stage)		
Damage Level II	beari	rupture has occurred in members on ng capacity of the structure. Failu rther deterioration.	9	
	Remedial measures should be taken in early stage because of the bridge may be hindered.		early stage because the function	
	(Pron	npt Measures Stage)		
Damage Level III	Rupture has occurred in critical members which may impair the function of the bridge. Vertical stiffeners at the stress concentration points have broken. Main members such as diagonal members of truss bridge have broken. The deck of a composite bridge structure is broken.			
	A condition in which the function of the bridge is im likely to occur, and urgent measures should be taken.			
	(Eme	rgency Measures Stage)		

Damage of Steel Member		Rupture	1/4
Severity: I No dan		nages and no functional problems in a bri	dge. (Sound Condition)
take r		no hindrance to the function of the bridge asures from the viewpoint of preventive ma ance Stage)	
Severity: III	Remedial measures should be taken in early stage be the bridge may be hindered. (Early Measures Stage)		

Severity: I

The rupture was repaired with a steel plate or other means to restore function, and no new rupture occurs.

Severity: III

Ruptures have occurred in members that have little effect on the load-bearing capacity.

(If structural safety may be compromised against large external forces such as earthquakes)

Severity: III

Ruptures have occurred in members that have little effect on the load-bearing capacity.

(If structural safety may be compromised against large external forces such as earthquakes)

Remarks

• In case that the members other than the main member are broken, the structural safety is not significantly impaired in the normal service state. Even in such a case, it is necessary to pay attention to the fact that the performance of the bridge against a large external force such as an earthquake may have deteriorated.

Damage of Steel Member	Rupture	2/4	

Severity: III

A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Emergency Measures Stage)

The vertical stiffener at the stress concentration point has broken partially, which may lead to a serious accident such as buckling of the main girder.

Main members such as diagonal members of truss bridge have been broken, which may lead to collapse of bridge.

The diagonal material embedded in the floor slab concrete of the truss bridge has been broken, which may lead to the collapse of the bridge.

Example of rupture in part of truss bridge diagonal member.

Remarks

• The breakage of main member generally has a serious adverse effect not only on the damage of the member but also on the structural safety of the entire bridge.

Damage of Steel Member

Rupture

3/4

Special

The cases in the table below require detailed condition understanding.

A part of the suspension material of the arch bridge has ruptured due to corrosion, and it is suspected that other suspension materials under the same conditions are also progressing.

PC steel materials have ruptured due to the progress of corrosion, and it is suspected that similar corrosion also occurs at other places.

A part of the diagonal member of the truss bridge has broken, and it is suspected that the other diagonal members under the same conditions is also being cracked or broken.

PC steel material is protruding and colliding with the mounted facility.

Remarks

- If the cause of the breakage of the bridge member is unknown, it is necessary to identify the factor by grasping the detailed state and confirm the possibility that similar damage will occur to other members.
- When stainless steel or the like is used for the protection tube or the clasp, the steel material
 may be significantly corroded due to contact with different metals. In this case, it should be
 noted that other members having the same structure may be corroded simultaneously

Damage of Steel Member Rupture 4/4

Special

The cases in the table below require detailed condition understanding.

PC steel material ruptures and protrudes (Similar damage may progress in other PC steel materials).

Concrete at the PC steel anchorage part for prestressing of cross beam has peeled off, and PC steel has also come out (Similar damage may progress in other PC steel materials).

PC steel material breaks and is protruding (Similar damage may progress in other PC steel materials).

PC steel material has ruptured, and it is suspected that other PC steel materials have deteriorated and that the deterioration of members is due to the infiltration of rainwater into the PC girders.

Remarks

- If the cause of the breakage of the bridge member is unknown, it is necessary to estimate the factor by grasping the detailed state and confirm the possibility that similar damage will occur to other members.
- If a slip-out has already been seen, it is necessary to pay attention to damage to third parties due to protrusion of other PC steel materials, and injury during periodical inspection work.

Table A1.4 below outlines the condition that lead to assignment of the various damage levels for crack in a concrete member.

Damage of Concrete Member		Crack	Damage Level N-III			
Damage Level N	Fissures with no structural impact and crack width less than 0.4 m					
	There is no hindrance to the function of the structure, but it is desirable to take measures from the viewpoint of preventive maintenance. (Preventive maintenance stage)					
Damage Level I	Fissures with structural impact (shear, bending, compression stresses and crack width less than 0.4 mm. Another kind of cracks with a widt between 0.4 mm and 1.00 mm					
	Remedial measures should be taken in early stage, because the function of the bridge may be hindered. (Early Measures Stage)					
Damage Level II	Fissures with structural impact (shear, bending, compression stresses) and crack width more than 0.4 mm. Another kind of cracks with a width more than 1.00 mm					
	A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Prompt Measures Stage)					
Damage Level III	Fissures with a serious impact on the structural behavior (potential risk of total or partial collapse of the element) The element's stability cannot be ensured and an accident with serious consequences for users may occur.					
	A condition in which partial or total failure of the structure has occurred or is inevitable and immediate measures should be taken. (Emergency Measures Stage)					

Damage of Concrete Member		Crack	1/6	
Severity: I	There is no hindrance to the function of the structure, but it is desirable to			
	take measures from the viewpoint of preventive maintenance. (Preventive			
	maintena	nce stage)		

There is a crack that can be easily seen by closeup visual observation, but it is unlikely to progress if for example:

Position where the stress does not change repeatedly or is small

Position/property that is considered to be low or not likely to cause corrosion of internal steel due to infiltration of rainwater

There is a noticeable crack that can be easily visually recognized, and if left unattended, deterioration is expected to progress steadily due to infiltration of rainwater into the interior.

There is a noticeable crack that can be easily visually recognized, and if left unattended, it is expected that the deterioration will certainly progress due to infiltration of rainwater into the interior.

There is a noticeable crack that can be easily visually confirmed, and it is expected that deterioration will certainly progress due to the possibility that rainwater may enter the girder from above.

Remarks

• If cracking has occurred in a part that may have a significant impact on load bearing capacity, the progress should be carefully monitored. (For example, root of overhanging member, shear crack, suspicion of member penetration).

Damage of Concrete Member Crack 2/6

Severity: II

Remedial measures should be taken in early stage, because the function of the bridge may be hindered. (Early Measures Stage)

There is a crack that can be easily seen by closeup visual inspection, and the corrosion of internal reinforcing bars and PC steel material is progressing.

A large number of cracks on the girder, concrete spalling and exposed rebars have occurred, and corrosion of the reinforcement bars has progressed extensively.

There are many remarkable cracks in the anchorages at the girder ends of PC bridges, which may indicate corrosion of internal steel.

There is a crack that can be easily seen by closeup visual inspection, and it is expected that deterioration will progress rapidly due to continued significant water leakage.

Remarks

• Depending on the location of cracks and the type of cracks, the load bearing capacity may be seriously affected, so detailed conditions must be grasped or evaluated as Severity level Very High (For example, there are suspected cases of cracks at the base of the cantilever member, shearing cracks, cracks penetrating the member, etc.).

Damage of Concrete Member		Crack	3/6			
Severity: III	A condition in which the function of the bridge is impaired or is very likely					
	to occur, and urgent measures should be taken. (Emergency Measures					
	Stage)					

Significant cracks have occurred near the supporting point of the main girder, and the function of the bearing is also significantly reduced.

Many cracks have occurred in the main members, and it is considered that the reinforcement bars have ruptured at various places.

Significant cracks have occurred in the parts such as the receiving beams of the main members, whose destruction directly causes the collapse of the bridge.

Remarks

• If the cause of the crack or the adverse effect on the member cannot be easily determined, it is necessary to grasp the detailed condition.

Damage of Concrete Member			Crack	4/6
Severity: III A condition in which the function of the bridge is impaired or is very li			ge is impaired or is very likely	
	to occur, and urgent measures should be taken. (Emergency Measu			aken. (Emergency Measures
Stage)				

The pile-bent type bridge pier is significantly cracked in the axial direction, and it is suspected that the pile-bent may be destroyed due to the effect of eccentric load, and the bridge may fall down.

The beams and columns of the substructure are markedly cracked, and it is suspected that the bridge may collapse if it progresses.

Remarks

• If the cause of the crack or the effect on the member cannot be easily determined, it is necessary to grasp the detailed condition.

Damage of Concrete Member Crack 5/6

Special

The cases in the table below require detailed condition understanding.

Cracks have developed from parts that have been repaired or reinforced in the past, and it is considered necessary to investigate the causeln the case of cracks caused by re-deterioration, it is often impossible to determine the entire appearance of the deformation by visual inspection, and if deterioration is progressing internally, it may be in a dangerous state).

Cracks have developed from parts that have been repaired or reinforced in the past, and it is considered necessary to investigate the cause (In the case of cracks caused by re-deterioration, it is often impossible to determine the entire appearance of the deformation by visual inspection, and if deterioration is progressing internally, it may be in a dangerous state).

When cracks develop in the main member, it is difficult to determine whether the serious adverse impact on load bearing capacity is undeniable by only visual inspection.

For example:

- Support area of Gerber/cantilever hinged bridge structure
- · Area which supports bearing capacity of bearing
- Shear crack

Suspected to be caused by salt damage or alkalinesilica reaction.

Remarks

If salt damage or alkali-silica reaction occurs, it will be difficult to repair and reinforce it if it
becomes serious, and there is a risk of being forced to reconstruction. Therefore, if there is
a possibility that salt damage or alkali-silica reaction has occurred, it is advisable to seek
the advice of an expert and study the maintenance and management plan based on the
investigation.

Damage of Concrete Member

Crack

6/6

Special

The cases in the table below require detailed condition understanding.

The details of the bridge are unknown and it is difficult to grasp the cause.

Although there are no noticeable free limes, regular cracks occur in a wide area, and it is necessary to understand the cause.

Although there is no noticeable free lime, it is cracked irregularly in two directions (If aggregate pop-out is observed, it is suspected that an alkaline-silica reaction has occurred).

Situation suspected of causing salt damage or alkalinesilica reaction.

Remarks

If salt damage or alkali-silica reaction occurs, it will be difficult to repair and reinforce it if it
becomes serious, and there is a risk of being forced to re-construction. Therefore, if there
is a possibility that salt damage or alkali-silica reaction has occurred, it is advisable to seek
the advice of an expert and study the maintenance and management plan based on the
investigation.

Table A1.5 below outlines the condition that lead to assignment of the various damage levels for crack in a concrete slab.

Damage of Concrete M	ember	Slab Crack	Damage Level N-III
Damage Level N	Slight and local cracking <0.2mm wide (no structural impact. There is no hindrance to the function of the bridge, but it is desirable to take measures from the viewpoint of preventive maintenance. (Preventive Maintenance Stage)		lge, but it is desirable to take
Damage Level I	in mem main m future. functio	are within 0.2mm with no indication hers (cross frame, lateral bracing nembers immediately. The cracks Remedial measures should be tak n of the bridge may be hindered. Measures Stage)) but are unlikely to reach the s will continue to grow in the
Damage Level II	Cracks within 0.2mm-0.3mm width in a uniaxial direct leakage that will lead structural impact and reduction of A condition in which the function of the bridge is impalikely to occur, and urgent measures should be taken. (Pro Stage)		nd reduction of durability. bridge is impaired or is very
		more than 0.3mm wide with intervon together with water leakage, fron in loading capacity.	-
	or is ine	ition in which partial or total failure evitable and immediate measures res Stage).	

	Damage of Concrete	Member	Slab Crack	1/5	
	Severity: I	There is no	hindrance to the function of the	bridge, but it is desirable to	
take measures from the viewpoint of preventive maintenance. (Prev			ive maintenance. (Preventive		
		Maintenand	ce Stage)		

There is no noticeable water leakage, but extensive cracks in a grid pattern develop throughout the concrete slab.

There are relatively few cracks, but there are clear penetrating cracks (water leakage, precipitation of lime).

Rainwater is significantly infiltrating the concrete slab, and it is expected that deterioration will progress rapidly if left unattended.

There are relatively few cracks, but there are clear penetrating cracks (water leakage, precipitation of lime).

- If the concrete slab has a through crack, it is likely that deterioration will progress rapidly if left unattended. Further, the infiltration of rainwater significantly accelerates the deterioration of the concrete slab.
- If the concrete slab has a spalling or peeling, there is a risk of falling concrete pieces.

3		Damage of Concrete Member	Slab Crack	2/5
---	--	---------------------------	------------	-----

Severity: II

Remedial measures should be taken in early stage, because the function of the bridge may be hindered. (Early Measures Stage)

There is a densely developed grid-like cracks with water leakage. Or there is a large area with concentrated wet cracks on the bottom surface of the concrete slab.

There is a densely developed grid-like cracks with water leakage. Or there is a large area with concentrated wet cracks on the bottom surface of the concrete slab.

Rainwater has penetrated into the concrete slab, and the corrosion of steel bars is widespread.

Significant cracks occur in the filling concrete part (The filled concrete part may fall off).

Remarks

• If the concrete slab is widely cracked, or if the corrosion of the reinforcing bars progresses due to the infiltration of rainwater, the concrete slab may fall off extensively. In addition, the wheel load may cause the concrete slab to fall down.

Damage of Concrete Member Slab Crack 3/5	
--	--

Severity: III

A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Emergency Measures Stage)

In the case that the concrete slab loses its integrity in a certain area, it may easily fall out due to the action of wheel load.

The concrete slab is cracked with noticeable water leakage, and there is obvious spalling or peeling on the bottom surface of the concrete slab.

Densely developed grid-like cracks with pronounced water leakage.

Development of white color cracks with lime deposits and discoloration due to infiltration spread on part of the bottom surface of the slab (If the pavement on the concrete slab shows a dent or a slag of cement, it is likely that the top surface of the concrete slab has turned into granulation).

- If rainwater penetrates widely inside the concrete slab, it may cause a sudden fall-out accident due to deterioration of the concrete slab.
- If the pavement is dented or the cement component is blown out, the concrete slab may be significantly deteriorated, such as turning into granulation from the top. If this judgment is difficult, it is necessary to grasp the detailed state.

Damage of Concrete Member Slab Crack 4/5

Special

The cases in the table below require detailed condition understanding.

If irregular cracks develop or if the discoloration spreads over the entire surface of the concrete slab, complex deterioration such as concurrent alkali-aggregate reaction may occur.

If there is significant spalling, peeling, or exposed reinforcing bars on the bottom surface of the concrete slab, deterioration may have progressed inside the slab.

Part of the concrete slab shows unusual discoloration and water leakage

Although no grid-like cracks with remarkable water leakage appeared, it was suspected that water retention had spread inside the concrete due to the spread of significant discoloration on the entire surface of the slab.

- If the salt damage or alkali-aggregate reaction becomes serious, repair and reinforcement
 may become difficult and it may be necessary to re-construction. It is necessary for an expert
 to grasp the condition and prepare a maintenance plan.
- If cracks are not noticeable but water stains and lime deposits are widely spread, horizontal cracks may have spread inside the concrete.

Damage of Concrete Member Slab Crack 5/5

Special

The cases in the table below require detailed condition understanding.

There is concern about falling out of the filling concrete (the photo shows an example of falling out).

There is concern about falling out of the filling concrete (the photo shows an example of falling out).

Characteristic cracks and white discoloration on the pavement surface (The concrete slab under the pavement may be significantly damaged).

- Even if the repair and reinforcement materials have been installed, tapping with a hammer or palpation may be effective.
- If repairs and reinforcements materials have been installed, it is possible that damage, existed in the past, so it is also effective to check the past repair history and background in advance.

Table A1.6 below outlines the condition that lead to assignment of the various damage levels for corrosion in bearings.

Bridge Bearing		Damage of bearing	Damage Level N-III
loss of section for There is no hind expected to profrom the viewpo		osion of the total surface area of bear of section found.	ring is Less than 10% with no
		e is no hindrance to the function of the cted to progress if left unattended. It the viewpoint of preventive maintena	is desirable to take measures
		entive Maintenance Stage)	
Damage Level I	beari	10-50% percentage of surface is affecting also being reduced (section loss of corrosion continues as it is, the located.	on the bearing is noticeable),
		Remedial measures should be taken in early stage, because the function of the bridge may be hindered.	
	(Early Measures Stage)		
50% of the consider the function of the b A condition in which		50% of surface is affected with over of the considered area is affected. The unction of the bearing is lost and it may	ne load bearing capacity and
		ndition in which the function of the bridge is impaired or is very to occur, and urgent measures should be taken.	
	(Pron	npt Measures Stage)	
Damage Level III	beari beari Abno	50% of surface is affected with ove ng and its elements. The bearing of ng is significantly affected interfering rmalities are noticed at the gap between as within the bearing and its elements	capacity and function of the g with its structural integrity. ween bearing and girder and
		ndition in which partial or total failure of ccurred or is inevitable and immediat	9
	(Eme	rgency Measures Stage).	

Others Damage of Bearing 1/4

Severity: I

There is no hindrance to the function of the bridge, but it is desirable to take measures from the viewpoint of preventive maintenance. (Preventive Maintenance Stage)

The paint on the bearing has deteriorated, causing the base concrete to be chipped. It is expected that deterioration will progress if left unattended and it will be difficult to maintain the bearing function even if repaired.

Corrosion is found in the bearing body, the bearing function is reduced, and it is considered that the function will be rapidly lost if left unattended.

If the anticorrosion function of the bearing is significantly reduced and corrosion is progressing on the whole, it is expected that it will be difficult to recover its function rapidly if left unattended.

Corrosion is progressing and bolts are loosening. If left untreated, the performance is expected to decline steadily due to the further progress of corrosion and other natural causes.

Others Damage of Bearing 2/4

Severity: II

Remedial measures should be taken in early stage, because the function of the bridge may be hindered. (Early Measures Stage)

In the case that the entire main body of the bearing is significantly corroded and the thickness of the bearing is also being reduced, if the corrosion continues as it is, the load bearing capacity may be reduced, which may cause a serious disaster such as dropping of the girder.

Regarding the bearing and the main girder that attaches it, significant corrosion with a decrease in plate thickness is progressing

The mounting bolt of the bearing is broken and the support function is deteriorated. If a large external force such as an earthquake occurs, it may not be possible to satisfy the required functions.

The rubber bearing body has noticeable cracks. If a large external force such as an earthquake occurs, it may not be possible to satisfy the required functions.

Remarks

• If there is significant damage to the bearing body or mounting part, it will cause serious damage as it will function against normal traffic loads but will not perform the required functions against the effects of large-scale earthquakes, etc.

Others Damage of Bearing 3/4

Severity: III

A condition in which the function of the bridge is impaired or is very likely to occur, urgent measures should be taken. (Emergency Measures Stage)

If the load bearing function of the bearing is lost, such as the fall off of a roller of the bearing, there is a possibility of a dangerous state due to a step or girder fall down.

If it is recognized that the load bearing capacity of the bearing is greatly reduced due to the damage of the pedestal mortar, there is a possibility that it will be in a dangerous state due to a step or the girder falling off.

The bearing part, the girder of its mounting part, and the substructure main body are severely damaged.

(The function of the bearing is lost, and it may lead to a bridge collapse.)

If the bearing and its attachment to the main girder have a significant section loss, the girder ends may collapse due to the influence of wheel load or a small/medium-sized earthquake.

Others Damage of Bearing 4/4

Special

The cases in the table below require detailed condition understanding.

Abnormalities are found in the gap between the bearing and the end of the girder, so it is necessary to investigate the cause.

Corrosion has spread to the vicinity of the bearing, and it is suspected that cracks will soon begin to occur.

Suspected damage to the bearing body due to abnormal residual displacement after an earthquake

Damage of bearing mounting part may affect bearing function, so load bearing capacity needs to be evaluated.

Table A1.7 below outlines the condition that lead to assignment of the various damage levels for looseness and loss of screws, rivets, anchors and bolts in steel members.

Steel Members	Looseness and Loss of screws, rivets, anchors and bolts	Damage Level N-III	
Damage Level N	Below 5% of connection bolts or rivets is a between connected parts are identified.	ffected. No movements	
	There is no hindrance to the function of the breezeed to progress if left unattended. It is defrom the viewpoint of preventive maintenance.	sirable to take measures	
	(Preventive Maintenance Stage)		
Damage Level I	Between 5% and 20% of connection bolts or rivets are losecondary member joints. Movements between connection bolts or rivets are losecondary member joints.		
	Remedial measures should be taken in early start of the bridge may be hindered.	age, because the function	
	(Early Measures Stage)		
Damage Level II	Between 20% and 50% of connection bolts or rivets are in secondary member joints. Movements between connected and there is risk of an accident due to a failing of		
	A condition in which the function of the bridge likely to occur, and urgent measures should be	•	
	(Prompt Measures Stage)		
Damage Level III Over 50% of connection bolts or rivets are loose or lo member joints. Movements between connected parts are there is a risk of structural failure or collapse. A condition in which partial or total failure of the bearing of has occurred or is inevitable and immediate measures sho		•	
		•	
	(Emergency Measures Stage).		

Others Looseness and Loss of Bolts Steel

Other Conditions

The bolt is loose, and nuts, bolts, rivets, etc. have fallen off, which includes broken bolts and rivets

Bolts are falling out (The bolts may break due to a large external force).

Bolts are broken and lost.

Some high strength bolts are missing.

Loose anchor bolts and mounting bolts.

Remarks

• High-strength bolts (such as F11T) may have delayed rupture.

Others	Deterioration of Anticorrosion Function	Common
	Deformation is seen in the corrosion protection (painting, plating, metal spraying, etc.). (In the cacorrosion resisting steel material, evaluate it by	ase of atmospheric

No rusting, but noticeable deterioration in topcoat.

Although the rust has not spread, the deterioration of the coating film is progressing and the undercoat paint is exposed.

Deterioration of the plating and coating surface.

Rust on the surface of plated steel member.

Remarks

• In the case of that the coating-based anti-corrosion layer is progressively deteriorated, the risk of rusting of the base metal increases rapidly.

Table A1.8 below outlines the condition that lead to assignment of the various damage levels for spalling, peeling and rebar exposure in concrete members.

Concrete Members	Spalling, Peeling and Rebar exposure Damage Level N-III		
Damage Level N	Slight peel off which causes no negative effect or damage, rebars exposed in isolated areas without corrosion. Structural property preserved with partial loss of durability & functional properties, no risk of fragments falling off.		
	It is desirable to take measures from the maintenance.	viewpoint of preventive	
	(Preventive Maintenance Stage)		
Damage Level I	Small range of peel off due to external forces, partial rebars expose without corrosion which affects the durability of the element. Structural property preserved with partial loss of durability & functional properties with risk of fragments falling off.		
	Remedial measures should be taken in early stood the bridge may be hindered.	tage, because the function	
	(Early Measures Stage)		
Damage Level II	Wide range of peel off due to rebar corrosion, partial rebars exposivith corrosion expansion leading to reduction in the bearing capa of the member. Partial reduction of Structural property (partial reputure), rebars exposure visible in over 50% of surface, with rist fragments falling off.		
	A condition in which the function of the bridge is impaired or is very likely to occur, and urgent measures should be taken. (Prompt Measures Stage)		
Damage Level III	Wide peel off which affects safe use of the failure, serious and wide range exposure of corrosion affecting the bearing capacity of property is compromised (reinf. Rupture), we falling off.	f rebars with widespread f the member. Structural	
	A condition in which partial or total failure of the has occurred or is inevitable and immediate r		
	(Emergency Measures Stage).		

Others	Spalling, Peeling, Rebar Exposure Concrete		
Other Conditions	A condition in which the surface of the concre peeled. In the case of that the reinforcing bar part, it is called rebar exposure. (If it is cracked,	is exposed at the peeling	

Concrete member with peeling and reinforcing bar exposed (Concrete pieces may fall).

Concrete member with spalling and/or peeling (Corrosion of steel may progress internally).

Concrete member with spalling and/or peeling (Cracks are progressing inside the member due to a large external force).

Concrete member with spalling and/or peeling (Re-deterioration of the repaired part may cause spalling and/or peeling).

Remarks

Table A1.9 below outlines the condition that lead to assignment of the various damage levels for water leakage and free lime in concrete members.

Concrete Members		Water leakage and free lime	Damage Levl N-III
Damage Level N	extent	and spot water leakage and free lim is below 50% of the element surfa prations (e.g., exposed reinforceme	ce there are no any associated
		desirable to take measures from enance.	the viewpoint of preventive
	(Preve	ntive Maintenance Stage)	
Damage Level I	deterio mode	zed or partial water leakage an oration extent is over 50% of the rate associated deteriorations (e.g. ion loss).	e element surface there are
		dial measures should be taken in ea bridge may be hindered.	arly stage, because the function
	(Early	Measures Stage)	
Damage Level II		is and wide range water leakage the eaching free lime or salt leading to per.	9
Damage Level III Serious with lea		dition in which the function of the co occur, and urgent measures sho	
		pt Measures Stage)	
		is and wide range water leakage the eaching free lime or salt leading to member.	9
	A condition in which partial or total failure of the has occurred or is inevitable and immediate in		
	(Emer	gency Measures Stage).	

Others	Water Leakage/Free Lime	Concrete
Other Conditions	Water and/or lime is seeping or leaking	-
	members. (If it is cracked, evaluate it as we	ell)

Waterleakage around the steel member embedded in the concrete part (May be significantly corroded inside the embedded part).

Water leakage from the concrete slab (If water leakage continues from the same location due to through cracks or the like, local deterioration may become apparent).

Water leakage from the boundary between girder members (The filling part may deteriorate, or rainwater may penetrate into the parts and deteriorate the parts). (There may be corrosion of laterally tightened PC steel material that crosses the girders.)

Water leakage and free lime precipitation from the joint of the precast member (Corrosion of the PC steel materials and reinforcing bars between/in the concrete members may occur, and/or corrosion may spread inside the concrete members along the steel materials).

Remarks

If corrosion of the steel material is suspected in the part embedded in the concrete, it is better to check the condition inside the concrete by removing it by tapping sound inspection or peeling part of the concrete

Others Water Leakage/Free Lime Concrete Other Conditions Water and/or lime is seeping or leaking from the joints of concrete members. (If it is cracked, evaluate it as well) Precipitation of free lime has occurred from the filling part of the precast hollow slab bridge (The horizontally tightened PC steel material may have deteriorated due to infiltration of rainwater, etc.). Precipitation of free lime has occurred from a crack on the slab. (Corrosion of the PC steel materials and reinforcing bars between/in the concrete members may occur, and/or corrosion may spread inside the concrete members along the steel materials).

Others Damage of Reinforced Members Concrete

Other Conditions

Defects have occurred in coating materials such as steel plates, sheets, and paintings that have repaired or reinforced concrete members. (Damage to concrete reinforcement is treated as damage to the main body)

Corrosion is suspected on the reinforced steel plate on the back of the concrete slab, which is suspected of permeating rainwater into the slab (The deterioration of the concrete slab may progress inside, and it may fall out suddenly).

Re-deterioration (corrosion, spalling) of reinforcing member (steel plate) is observed (Reinforcement effect may be lost or deterioration may have progressed inside the reinforcement member).

Re-deterioration of repaired member (surface protection work) is observed. In this example, the concrete girder is also cracked, and "crack of concrete" is also evaluated.

In case further deterioration of the repaired member is observed, it is possible that damage could be progressing on the inside without visible signs from the outside.

Others Gap Error of Girder-End Common

Other Conditions

Abnormality is found in the spacing between girder-ends and the displacement/spacing of expansion joint devices, bearings, systems for preventing bridge collapse, etc.

The girder-end is in contact with the substructure (The substructure may be displaced).

Spacing between expansion joint devices is abnormally narrow (The substructure may be displaced due to natural occurrences).

Spacing between expansion joint devices is abnormally narrow (The substructure may be displaced due to the influence of an earthquake or other natural occurrences).

The expansion joint devices are not evenly spaced (in the direction perpendicular to the bridge axis).

(In addition to the displacement of the substructure due to the impact of the earthquake, abnormal horizontal displacement may occur between superstructure and substructure due to abnormalities in the superstructure and damage to the bearings.)

Others Irregularities of Road Surface Road Surface

Other Conditions

There are peculiar steps and/or irregularities on the road surface (including steps of the expansion joint devices)

Irregularities at the boundary with the expansion joint device and bridge pavement (Partial damage may progress due to the impact load from the vehicle.)

There is a clear step at the boundary between the approach road and the bridge surface (The step of the approach road could be as a result of settlement or due to an earthquake).

Significant road surface irregularities at the boundary of spans (The substructure may have subsidence, inclination, or damage of bearing).

There is a clear misalignment in the expansion joint devices This could be due to the settlement on the approach road or the bearing being destroyed).

Others Abnormality of Pavement Road Surface

Other Conditions

The pavement surface has cracks, spalling, potholes, or water or lime exudation.

If the pavement surface shows unusual damage, the concrete slab may be significantly damaged.

(Example where the top surface of the concrete slab has turned into granulation)

If the pavement surface shows unusual damage, the concrete slab may be significantly damaged.

For example:

- Concrete slab has turned into granulation
- · Fatigue cracks in steel plate floor

If the pavement surface shows unusual damage, the concrete slab may be significantly damaged.

For example:

- Concrete slab has turned into granulation
- · Fatigue cracks in steel plate floor

If the pavement surface shows unusual damage, the concrete slab may be significantly damaged.

(Example of cracks in the steel plate floor that penetrate the deck)

Others Abnormality in the Anchorage Part Common

Other Conditions

Abnormality is found in the fixing part of the tension steel member of PC material, the cable member, etc.

Corrosion protection of the fixing part of the cable member is deteriorated, or rainwater may penetrate into the fixing part.

Significant rusting is observed at the fixing part of the girder connecting device.

Rust and lime exudation can be seen in the PC steel material fixing part in the girder (Rainwater may reach the fixing part or cable member from the road surface side such as the concrete slab top surface, and corrosion may progress).

Horizontally tightened PC steel material is missing (In addition to the reduction in load bearing capacity, it may easily be damaged by a third party).

Remarks

Others Discoloration/Deterioration Common

Other Conditions

Abnormality is seen in the color of the member such as peculiar discoloration of concrete. Material such as rubber or resin is changing.

If a characteristic discoloration is seen on the surface of the PC bridge, the internal PC steel may be significantly corroded.

If fire marks are seen, the strength of the member may have decreased.

If fire marks are seen, the strength of the member may have decreased.

If unusual discoloration is seen on the surface of the concrete member, a unique color may appear in the infiltrated state due to alteration of aggregate.

Others Water Leakage/Water Retention Common

Other Conditions

Leakage or abnormal water retention on the top surface or inside of the member, regardless of the original rain drainage mechanism such as the expansion joint device and drainage facility.

Significant water leakage is seen between the girders (On the upper surface of the substructure, water such as water leakage may not be promptly removed, which may cause long-term water retention).

Water has accumulated inside the member such as the box girder (If water leaks into the member due to gaps in the member or damage of the drainage facility, water may be retained).

Water has accumulated inside the member such as the box girder (If water leaks into the member due to gaps in the member or damage of the drainage facility, water may be retained).

Water has accumulated inside the member such as the box girder (If water leaks due to cracks or damage of drainage facilities, water may retain inside the members).

Remarks

Others Deformation/Defect Common

Other Conditions

Members are locally defected or deformed due to collision of vehicles or ships.

Large deformation or defect of structural member (Various deformations may occur in areas other than the relevant area due to vehicle collisions or interference between members).

Large deformation or defect of main girder (In the event of a flood or tsunami, floating debris may collide and damage structural member).

Significant deformation is seen in the upper lateral bracing (During an earthquake, a large horizontal force may cause deformation or rupture of lateral members).

Significant deformation is seen in the vertical members of the truss bridge (The members may be deformed or ruptured as a result of being knocked by vehicles).

Remarks

Others Sediment Clogging Common

Other Conditions Sediment has accumulated on catch-basin, drainage pipes, expansion joint devices, etc.

Sediment is deposited on the bearing

(It may lead to functional impairment such as promoting corrosion of bearings).

The expansion joint device is clogged with debris and sand.

The catch-basin is clogged with debris, causing poor drainage on the road surface.

Sediment is accumulated on the bridge support surface (Because of the environmental conditions of the bridge that are prone to water retention, concrete deterioration may occur).

Remarks

Others Subsidence/Movement/Inclination Common

Other Conditions

Peculiar subsidence, movement, and inclination occur in the foundation and substructure (In the case of a bearing, the functional impairment of the bearing is evaluated).

Deformation can be seen on the entire bridge (The entire bridge may be in a dangerous state due to the inclination or subsidence of the substructure).

Deformation of the entire bridge can be seen on the river bridge.

(It may be in a dangerous state due to scouring or subsidence of substructure).

There is a possibility that the substructure is displaced (If there is a deformation of the ground around the substructure, the entire bridge may be in a dangerous state.)

Traces of earth and sand can be seen around the substructure.

(If liquefaction occurs, the substructure may have subsidence or inclination).

Note: It is unknown whether there are any abnormalities in the case of the photo.

Others Subsidence/Movement/Inclination

Common

Other Conditions

Peculiar subsidence, movement, and inclination occur in the foundation and substructure (In the case of a bearing, the functional impairment of the bearing is evaluated).

Deformation of the entire bridge can be seen on the bridge.

(It may be in a dangerous state due to scouring or subsidence of substructure).

Deformation of the entire bridge can be seen on the bridge.

(It may be in a dangerous state due to scouring or subsidence of substructure).

Suspected that the abutment is subsiding, moving, or inclining due to collapse of back embankment (If there is a deformation of the ground around the substructure, the entire bridge may be in a dangerous state).

The retaining wall which protects the substructure has subsided due to scouring.

Remarks

Others Subsidence/Movement/Inclination Common

Other Conditions

The member is deformed by buckling on the pile-bent pier in the underwater.

Buckling of steel pile-bent piers has caused subsidence of superstructure.

(The stability of the substructure may be impaired and the bridge may be in a dangerous state).

Steel pile-bent pier is buckled (There is a risk of rapid deformation).

Remarks

• In the case that it is not possible to directly check the condition of the steel pile-bent pier underwater, it may be effective to directly check with a diver or use an underwater camera.

Others Scouring Substructure

Other Conditions

Scour is occurring in the foundation.

The foundation is scoured and the piles are exposed (Damage discovered after the tsunami).

The foundation is scoured remarkably due to flowing water.

The foundation is scoured remarkably due to flowing water.

Scour is progressing due to flood

(As scouring progresses, the pier may subside or incline).

- In case deposits are accumulated in the scour area, it is often impossible to expect ground resistance.
- If it is not possible to directly check the condition of the foundation, it is necessary to check with a camera, etc., if required.

Others Soil Suck-out Substructure

Other Conditions

Sediment outflow occurs due to scouring on the foundation.

There is a possibility that cavities may occur on the bottom surface of the abutment foundation due to scouring.

The ground on the foundation of abutment is scoured and the embankment soil on the back of the abutment flowed out.

(If abnormalities appear on the pavement surface, it may be due to the erosion of the backfill).

Remarks

• If the backfill of the bridge is eroded, abnormalities such as cracks and depressions may appear on the road surface.

Others Other Abnormalities Common

Other Conditions

Significant deformation in the ground near the foundation (The entire bridge may be in a dangerous state because the stability of the substructure has been impaired).

Large graffiti is seen (Graffiti may adversely affect anticorrosion coatings such as painting, or may hinder the formation of protective rust on atmospheric corrosion resisting steel material).

The section is missing due to corrosion of the drainage pipe (Damage of the drainage pipe may seriously affect the bridge body due to leaking drainage).



Girder-end collides with substructure (If there is no clearance between the girder-end and the substructure, a large force may be applied to both structure, which may lead to buckling of the girder or damage to the abutment).

Remarks

Others Others Steel

The cases in the table below require detailed condition understanding.

Others Others Cable

The cases in the table below require detailed condition understanding.

Crack on Coating Material Severity : I

Crack on Coating Material Severity : II

Peeling of Coating Material

Measures must be taken to prevent water from entering the strands

Severity: III

Remarks

Others Others Cable

The cases in the table below require detailed condition understanding.

Rust/Corrosion on Strand Severity: I

Crack on Coating Material Severity : II

Remarks

APPENDIX 2: PBC PERFORMANCE STANDARD

Appendix 2(a) Performance Standard for Paved High Road (Road Durability)

	SER	VICE CRITERIA	SERVICE LEVEL	RESPONSE TIME	TOLERANCE
	Element	Defect		<< x hours>> means "within x hours"	
1)	Maintenance of oth	ner Structures			
1.	Concrete bridges	Structural deterioration	Concrete bridges must be in good condition and fully functional.	In case of structural damage the contractor to notify the Engineer <<24	No tolerance permitted
	Blocked culvert	Obstruction due to sediments, soils and washed materials	Must be free flowing at all times	Hours>>	
2.	Steel bridges	Structural deterioration, leaking structures	The steel bridges (e.g. Bridge and pedestrian bridge) must be clean, in good condition, free of corrosion and fully functional	In case of structural damage the contractor to notify the Engineer <<24 Hours>>	No tolerance permitted
3.	Bridge expansion joints	Debris impending joint movement /damaging the joint	All expansion joints must be clean and in good condition and fully functional	In case of any condition which threatens structural integrity of the expansion joint, the Contractor must notify the Engineer <<24 Hours>	No tolerance permitted
4.	Guardrail / Pedestrian Rail	Deformed/Missing guardrails	Guardrails must be in good condition and fully functional	Damages and defects must be repaired << 1 week>>	No tolerance permitted
5.	Riverbeds	Obstructions due to debris or inappropriate vegetation	Riverbeds must be maintained to ensure free flow of water under the bridge and up to 50 meters upstream and downstream of the river at all times	Any accumulation of debris >400 mm must be removed	No tolerance permitted
		Eroded river beds	Erosion around bridge abutments and piers must be controlled with all reasonable measures at all times	<u>'</u>	However, the damaged portion pending repairs maybe left on site with proper signs and safety arrangements.

Appendix 2(b) Performance Standard for Paved Standard Road (Road Durability)

	SER	VICE CRITERIA	SERVICE LEVEL	RESPONSE TIME	TOLERANCE
	Element	Defect		<< x hours>> means "within x hours"	
1)	Maintenance of oth	ner Structures			
1.	Concrete bridges	Structural deterioration	Concrete bridges must be in good condition and fully functional.	contractor to notify the Engineer <<24	No tolerance permitted
	Blocked culvert	Obstruction due to sediments, soils and washed materials	Must be free flowing at all times	Hours>>	
2.	Steel bridges	Structural deterioration, leaking structures	The steel bridges (e.g. Bridge and pedestrian bridge) must be clean, in good condition, free of corrosion and fully functional	In case of structural damage the contractor to notify the Engineer <<24 Hours>>	No tolerance permitted
3.	Bridge expansion joints	Debris impending joint movement/damaging the joint	All expansion joints must be clean and in good condition and fully functional	In case of any condition which threat- ens structural integrity of the expan- sion joint, the Contractor must notify the Engineer <<24 Hours>>	No tolerance permitted
4.	Guardrail / Pedestrian Rail	Deformed/Missing guardrails	Guardrails must be in good condition and fully functional	Damages and defects must be repaired << 1 week>>	No tolerance permitted
5.	Riverbeds	Obstructions due to debris or inappropriate vegetation	Riverbeds must be maintained to ensure free flow of water under the bridge and up to 50 meters upstream and downstream of the river at all times	Any accumulation of debris >400 mm must be removed	No tolerance permitted
		Eroded river beds	Erosion around bridge abutments and piers must be controlled with all reasonable measures at all times	Causes for non- compliance must be eliminated <<2 weeks>> after water has sufficiently receded to allow working conditions	However, the damaged portion pending repairs maybe left on site with proper signs and safety arrangements

Appendix 2(c) Performance Standard for Unpaved High Road (Road Durability)

SER	VICE CRITERIA	SERVICE LEVEL	RESPONSE TIME	TOLERANCE
Element	Defect		<< x hours>> means "within x hours"	
1) Maintenance of otl	her bridges			
Concrete bridges	Structural deterioration	Concrete bridges must be in good condition and fully functional.	In case of structural damage the contractor to notify the Engineer <<24	No tolerance permitted
Blocked culvert	Obstruction due to sediments, soils and washed materials	Must be free flowing at all times	Hours>>	
2. Steel bridges	Structural deterioration, leaking structures	The steel bridges (e.g. Bridge and pedestrian bridge) must be clean, in good condition, free of corrosion and fully functional	_	No tolerance permitted
3. Bridge expansion joints	Debris impending joint movement/damaging the joint	All expansion joints must be clean and in good condition and fully functional	In case of any condition which threatens structural integrity of the expansion joint, the Contractor must notify the Engineer <<24 Hours>>	No tolerance permitted
4. Guardrail / Pedestrian Rail	Deformed/Missing guardrails	Guardrails must be in good condition and fully functional	Damages and defects must be repaired << 1 week>>	No tolerance permitted
5. Riverbeds	Obstructions due to debris or inappropriate vegetation	Riverbeds must be maintained to ensure free flow of water under the bridge and up to 50 meters upstream and downstream of the river at all times	Any accumulation of debris >400 mm must be removed	No tolerance permitted
	Eroded river beds	Erosion around bridge abutments and piers must be controlled with all reasonable measures at all times	•	However, the damaged portion pending repairs maybe left on site with proper signs and safety arrangements

Appendix 2(d) Performance Standard for Unpaved Standard Road (Road Durability)

SER	VICE CRITERIA	SERVICE LEVEL	RESPONSE TIME	TOLERANCE
Element	Defect	SERVICE LEVEL	<< x hours>> means "within x hours"	TOLERANCE
1) Maintenance of ot	her bridges			
Concrete bridges	Structural deterioration	Concrete bridges must be in good condition and fully functional.	In case of structural damage the contractor to notify the Engineer <<24	No tolerance permitted
Blocked culvert	Obstruction due to sediments, soils and washed materials	Must be free flowing at all times	Hours>>	
2. Steel bridges	Structural deterioration, leaking structures	The steel bridges (e.g. Bridge and pedestrian bridge) must be clean, in good condition, free of corrosion and fully functional	_	No tolerance permitted
3. Bridge expansion joints	Debris impending joint movement/damaging the joint	All expansion joints must be clean and in good condition and fully functional	In case of any condition which threatens structural integrity of the expansion joint, the Contractor must notify the Engineer <<24 Hours>>	No tolerance permitted
4. Guardrail / Pedestrian Rail	Deformed/Missing guardrails	Guardrails must be in good condition and fully functional	Damages and defects must be repaired << 2 weeks>>	No tolerance permitted
5. Riverbeds	Obstructions due to debris or inappropriate vegetation	Riverbeds must be maintained to ensure free flow of water under the bridge and up to 50 meters upstream and downstream of the river at all times	Any accumulation of debris >400 mm must be removed	No tolerance permitted
	Eroded river beds	Erosion around bridge abutments and piers must be controlled with all reasonable measures at all times	Causes for non- compliance must be eliminated <<2 weeks>> after water has sufficiently receded to allow working conditions	However, the damaged portion pending repairs maybe left on site with proper signs and safety arrangements

Appendix 2(e) Payment Reduction Calculation Table (Paved Road)

Project	ABC Road PBC Maintenance Project	BC Road PBC Maintenance Project							
Road Authority	Road Authority KeNHA, KURA, KeRRA, KWS Contractor XYZ Contractor								
Road Name/ Class/	Road Name/ Class/ Chainage/ (j)Length ABC Road			Road Class	A, B, C, D, E, Unclassified, Urba	an Road	15.0 Km		
Statement Month/ Year and Elapse of Month September			2014	3	Standard Service Level	High, Standard			

Contract Due Amount of the Month (x) 500,000 KSH

Ser	Service Level Criteria			•			Redu	ction			
Service	Service Scope	(a) Contract Road Length (km)	(b) Required Target	(c)=(a)*(b) Target Length (km)	(d)=(a)-(c) Exemption Length (km)	(e) Non- Compliant Length (km)	(f)=(e)-(d) (>=0) Adjusted Non- Compliant Length (km)	(g)=(f)/(c) NON- Compliant Rate	(h) Reduction Weight	(i)=(g)*(h) Reduction Rate (%)	(j)=(c)x(i) Reduction Length (km)
Documentation		15.0	100%	15.0	-	-	-	1%	4%	4.0%	0.60
1. Road Usability	A) Passability	15.0	100%	15.0	0.0	2.0	2.0	13%	40%	5.3%	0.80
2. Road User Comfort	B) Smooth and safe traffic	15.0	100%	15.0	0.0	4.0	4.0	27%	40%	10.7%	1.60
	C) Visibility	15.0	100%	15.0	0.0	2.0	2.0	13%	30%	4.0%	0.60
	D) Traffic information	15.0	100%	15.0	0.0	2.0	2.0	13%	30%	4.0%	0.60
- D LD LTT	E) Drainage capability	15.0	100%	15.0	0.0	2.0	2.0	13%	20%	2.7%	0.40
3. Road Durability	F) Vegetation Control	15.0	100%	15.0	0.0	2.0	2.0	13%	20%	2.7%	0.40
	G) Maintenance of other structures	15.0	100%	15.0	0.0	2.0	2.0	13%	10%	1.3%	0.20
	H) Slope Stability	15.0	100%	15.0	0.0	2.0	2.0	13%	6%	0.8%	0.12
									(k) Total =	35.5%	5.32

200%

Required Target	Required Target								
Elapse of Month	1. Road Usability	2. Road User Comfort	3. Road Durability						
1	50%	50%	50%						
2	100%	75%	75%						
3	100%	100%	100%						
4	100%	100%	100%						
5	100%	100%	100%						
6	100%	100%	100%						
7~	100%	100%	100%						

Calculation of the Payment Amount of the Month						
Contract Due Amount of the Month KSH 500,000 (X)						
Reduction Rate	%	35%	(k)			
Reduction Amount	KSH	177,333	(Z)=(X)X(K)			
Payment Amount of the Month	KSH	322,667	(y)=(x)-(z)			

Appendix 2(f) Payment Reduction Calculation Table (Unpaved Road)

Project	ABC Road PBC Maintenance Project							24
Road Authority	y KeNHA, KURA, KeRRA			XYZ Contracto				
Road Name/ Class/ Chainage/ (j)Length ABC Road				Road Class	A, B, C, D, E, Unclassified, Urba	an Road	15.0 Km	
Statement Month/ Year and Elapse of Month September			2014	3	Standard Service Level	High, Standard	'	

Contract Due Amount of the Month (x) 500,000 KSH

Ser	vice Level Criteria		Compliance	•			Redu	ction			
Service	Service Scope	(a) Contract Road Length (km)	(b) Required Target	(c)=(a)*(b) Target Length (km)	(d)=(a)-(c) Exemption Length (km)	(e) Non- Compliant Length (km)	(f)=(e)-(d) (>=0) Adjusted Non- Compliant Length (km)	(g)=(f)/(c) NON- Compliant Rate	(h) Reduction Weight	(i)=(g)*(h) Reduction Rate (%)	(j)=(c)x(i) Reduction Length (km)
Documentation		15.0	100%	15.0	-	-	-	1%	4%	4.0%	0.60
Road Usability	A) Passability	15.0	100%	15.0	0.0	2.0	2.0	13%	40%	5.3%	0.80
2. Road User Comfort	B) Smooth and safe traffic	15.0	100%	15.0	0.0	4.0	4.0	13%	40%	5.3%	0.80
	C) Visibility	15.0	100%	15.0	0.0	2.0	2.0	13%	30%	4.0%	0.60
	D) Traffic information	15.0	100%	15.0	0.0	2.0	2.0	13%	30%	4.0%	0.60
D 10 100	E) Drainage capability	15.0	100%	15.0	0.0	2.0	2.0	13%	20%	2.7%	0.40
3. Road Durability	F) Vegetation Control	15.0	100%	15.0	0.0	2.0	2.0	13%	20%	2.7%	0.40
	G) Maintenance of other structures	15.0	100%	15.0	0.0	0.0	0.0	0%	10%	0.0%	0.00
	H) Slope Stability	15.0	100%	15.0	0.0	2.0	2.0	13%	6%	0.8%	0.12
									(k) Total =	28.8%	4.32

200%

Required Target			
Elapse of Month	1. Road Usability	2. Road User Comfort	3. Road Durability
1	50%	50%	50%
2	100%	75%	75%
3	100%	100%	100%
4	100%	100%	100%
5	100%	100%	100%
6	100%	100%	100%
7~	100%	100%	100%

Calculation of the Payment Amount of the Month						
Contract Due Amount of the Month KSH 500,000 (X)						
Reduction Rate	29%	(k)				
Reduction Amount	KSH	144,000	(Z)=(X)X(K)			
Payment Amount of the Month	KSH	356,000	(y)=(x)-(z)			

Appendix 2(g) Sample Photo Image for bridge structure performance

Structural deterioration	Response Time	Image (Bad)	Image (Good)
1) Concrete Bridges			
Concrete bridges must be in good condition and fully functional.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		
Concrete bridges must be in good condition and fully functional.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)
Concrete bridges must be in good condition and fully functional.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		
2) Box Culvert			
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debris <400 mm must be removed.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debris <400 mm must be removed.		
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debris <400 mm must be removed.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debri <400 mm must be removed.		
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debri <400 mm must be removed.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debri <400 mm must be removed.		
3) Steel Bridges			
Structural deterioration, Leaking structures.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)
Structural deterioration, Leaking bridges.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		
4) Bridge expansion joints	5		
Debris impeding joint movement/damaging the joint.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)
Debris impeding joint movement/damaging the joint.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		
Debris impeding joint movement/damaging the joint.	In case of structural damage, the Contractor to notify the Engineer within 24 hours.		

Structural deterioration	Response Time	Image (Bad)	Image (Good)			
5) Guardrail / Pedestrian	s) Guardrail / Pedestrian Rail					
Deformed / Missing guardrails.	Damages and defects must be repaired within 2 weeks after detection.					
Deformed / Missing guardrails.	Damages and defects must be repaired within 2 weeks after detection.					

Structural deterioration	Response Time	Image (Bad)	Image (Good)				
6) Riverbeds Obstructions	Riverbeds Obstructions due to debris or inappropriate vegetation						
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debris <400 mm must be removed.						
Obstructions due to debris or inappropriate vegetation.	Any accumulation of debris <400 mm must be removed.						

Structural deterioration	Response Time	Image (Bad)	Image (Good)			
7) Riverbeds(Eroded river) Riverbeds(Eroded riverbeds)					
Eroded river beds	Erosion around bridge abutments and piers must be controlled with all reasonable measures at all times.					
8) Others						
Eroded slope protection	Must be fully functional with no serious defects that can endanger the structure					

APPENDIX 3: PBC INSPECTION FORM

Basic Information

Structure Name		Inspection Date			
Road Name	123 Road	Chainage	00+100		
Road Agency	KeNHA/KeRRA/KURA/KWS	Regional office			
Contractor	ABC				
Project Name	Performance Based Maintenance Contract for the Maintenance of 123 Road				
Structure Type	Bridge/Box Culvert/Footbridge	Superstructure Material	Concrete/Steel/Masonry/ Wooden		
Structure Length	100 m	Structure Width	15 m		

Inspection items

		Т	ime	Remarks	
Inspection Item	Inspection Sub -Item	Detection	Removal/ Notification		Photo
Cleanliness	Pavement				
	Slab				
	Bridge Seat				
	Sidewalk				
	Beams				
	Drainage				
	Railings / Guardrails				
Vegetation	Pavement				
overgrowth/ control	Bridge Seat				
	Sidewalk				
	Beams				
	Drainage				
Encroachment	Birds				
	Animals				
	Humans				
Vandalism	Railings/Guardrails				
	Signs				
	Lane Markers				
	Graffiti				
	Joints				
	Slope Protection				
	Structural Members				

		Т	ime		
Inspection Item	Inspection Sub -Item	Detection Removal/ Notification		Remarks	Photo
Damage to Members	Railings/Guardrails				
Members	Signs				
	Pavement			ex. Rutting, Cracks, Pothole, Damage on Expansion Joint and Kerb	
	Slab			ex. Cracks, Spalling, Rebar Exposure, Rusting, Honeycombs, Delamination	
	Superstructure			ex. Cracks, Spalling, Rebar Exposure, Corrosion, Honeycombs, Delamination, Paint Peel-off, Loose Bolts	
	Abutment			ex. Cracks, Spalling, Rebar Exposure, Corrosion, Honeycombs, Deformation, Settlement	
	Piers			ex. Cracks, Spalling, Rebar Exposure, Rusting, Honeycombs, Deformation, Settlement	
	Bearings			ex. Sedimentation, Corrosion, Functional Impairment, Slipping Out	
	Slope protection				
	Lighting				
	Expansion Joint				
	Foundations			ex. Scouring, Settlement, Exposure	

APPENDIX 4: ROUTINE INSPECTION FORM

Road Authority		
Project/Road		
Bridge Name	Chainage	
Road Class	Standard Service Level	
Bridge Classification	Bridge Type	
From	То	
Inspected By	Sign:	Date:

Category	Element	Material	Deterioration	Severity	Indicator
Road surface	Pavement		Siltation	N	Not observed or very limited
				III	Special case
				II	Above 50 mm thickness, narrow carriageway and drainage facilities clogging
				T	Less 50mm thickness,partial loss of function of carriageway
			Crack	N	Not observed or very limited
				III	Arrigator cracks (partial with depression) reflectction from bridge slab deformation
				II	Arrigator cracks (local, without depression)
				T	Only partial linier cracks
			Potholes	N	Not observed or very limited
				III	Above 50% of pavement
				II	25-50% of pavement
			I	Below 25% of pavement	
			Others	N	Not observed or very limited
				III	Urgent action

Category	Element	Material	Deterioration	Severity	Indicator
				II	Mid-term action
				1	Partialy damaged but maintain function
	Bridge Railing/		Deformation	N	Not observed or very limited
	Guardrail/Curb			III	Completely deformed or removed and lost function completely
				II	Deformed and lost function partialy
				1	Partialy deformed but maintain function
			Faulty lighting	N	Not observed or very limited
				III	>50 % - if there is Accident Risk
				Ш	10-50%-if no accident Risk resulting from loss of Visibility
				1	< 10% -No accident Risk
			Missing parts	N	Not observed or very limited
				III	The part loss has a serious impact on the element's structural behavior.
				Ш	The missing has a moderate impact on the element's structural behavior.
				1	The missing part has a minor impact on the element's structural behavior.
			Others	N	Not observed or very limited
				III	Urgent action
				Ш	Mid-term action
				1	Partialy damaged but maintain function
	Expansion joints		Deformation	N	Not observed or very limited
				III	above 2cm and presence of structural instability
				II	displacement 1cm to 2cm
				1	displacement less 1cm
			Misalignment	N	Not observed or very limited
				III	Element has completely lost its functional properties
				II	Element loses part of its functional properties
				1	Element preserves its functional properties

Category	Element	Material	Deterioration	Severity	Indicator
			Abnormal Spacing	N	Not observed or very limited
				III	Completely No space and unbalanced(too wide space on the other end)
				II	Spacing is maintained but abnormaly small or large
				1	Silted but spacing is properly maintained at both ends
			Abnormal Sound	N	Not observed or very limited
				III	Abnormal sound when vehicles pass on joints and effects to other elements
				II	Abnormal sound when vehicles pass on joints
				1	Small abnormal sound when vehicles pass on joints
			Others	N	Not observed or very limited
				III	Urgent action
			II	Mid-term action	
				1	Partialy damaged but maintain function
	Drainage system	tem CI	Clogging	N	Not observed or very limited
				III	Over 75% of structure's free section is blocked
				II	50% - 75% of structure's free section is blocked
				1	25% - 50% of structure's free section is blocked
			Broken	N	Not observed or very limited
				III	Few drinage systems are broken and necessary to exchange new drinage
				II	Few drinage systems are broken
				T	A drinage system is broken and easy repair
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				T	Partialy damaged but maintain function
Superstructure	Superstructure	Steel	Surface alteration	N	Not observed or very limited
				III	Abnormal alteration observed (special investigation proposed)

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Superstructure	Steel		II	The alteration has a functional impact and could cause an accident
				1	The alteration has only an esthetic impact
			Corrosion	N	Below 10% of the element's surface is affected
				III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
				1	Between 10% and 50% of the element's surface is affected
			Deformation	N	Not observed or very limited
				III	Clear deformation of entire components and hampers the proper functional or a serious accident.
				Ш	The deformation is noticeable at entire components of the structure and affecting other components.
				1	The partial deformation, sectional loss, lateral buckling observed.
			Crack	N	Not observed or very limited
				III	Identified cracks have extended to main components and may lead to breakage or collapse.
				Ш	Identified cracks have extended to main components further propagation leads to depression and pavement damage.
				1	Cracks are identified in elements but are unlikely to reach the main components immediately.
			Missing parts	N	Not observed or very limited
				III	The part loss has a serious impact on the element's structural behavior.
				II	The missing has a moderate impact on the element's structural behavior.
				1	The missing part has a minor impact on the element's structural behavior.
			Missing screws,	N	Not observed or very limited
			rivets, anchors	III	The bolts are missing/broken or the support function is deteriorated
				Ш	The bolts are missing/broken

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Superstructure	Steel		- 1	Bolts are loosening
			Rupture	N	Not observed or very limited
				III	Rupture has occurred in critical components which may impair the function of the bridge.
				Ш	The rupture has occourred in components with significant effect on the load bearing capacity of the structure.
				I	The rupture has occurred in components that have little effect on the load bearing capacity of the structure.
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				T	Partialy damaged but maintain function
Superstructure	Superstructure	Concrete	Honeycomb	N	Not observed or very limited
				III	<25mm deep without Reinf. Expossure (>50% surface)
				Ш	o-5mm deep (<50% of surface)
				1	Partially observed
			Spalling	N	Not observed or very limited
				III	The spalling depth is over 100mm and wide area
				II	Partially depth is over 100 mm.
				1	Partially depth is between 10 and 100 mm.
			Spalling concrete	N	Not observed or very limited
		showing reinforcing bars	III	The spalling observed of components and corrosion/rupture of reinforcing bars widely.	
			II	The spalling observed of components and corrosion of reinforcing bars limited.	
			T	The spalling observed partially and limited to find no corrosion of reinforcing bars.	
			Crack	N	Not observed or very limited and crack width less than 0.4 mm
				III	Serious impact on the structural behavior or cracks with a width more than 2.0mm

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Superstructure	Concrete		Ш	Fissures with structural impact and crack width less than 0.4mm, or cracks with a width more than 1.0mm
				1	Fissures with structural impact and crack width less than 0.4mm, or cracks with a width between 0.4-1.0mm
			Precipitate	N	Not observed or very limited
			(Freelime, Rust fluid)	III	The deterioration extent is over 50% of the element surface or there are other associated moderate or high severity deteriorations
				Ш	The deterioration extent is below 50% of the element surface or there are not any associated moderate or high severity deteriorations
				1	Partially observed.
		Others	N	Not observed or very limited	
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
Superstructure	Superstructure	Other (masonry,	Corrosion	N	Below 10% of the element's surface is affected
		Wooden)		III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				Ш	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
				T.	Between 10% and 50% of the element's surface is affected
			Deformation	N	Not observed or very limited
				III	Clear deformation of entire components and hampers the proper functional or a serious accident.
				Ш	The deformation is noticeable at entire components of the structure and affecting to other components.
				I	The partial deformation, sectional loss, lateral buckling observed.
			Misalignment	N	Not observed or very limited
				III	Element has completely lost its functional properties

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Superstructure			II	Element loses part of its functional properties. Found abnormal behavior.
				1	Element loses part of its functional properties. Not found abnormal behavior.
			Crack	N	Not observed or very limited and crack width less than 0.4mm
				III	Serious impact on the structural behavior or cracks with a width more than 2.0mm
				II	Fissures with structural impact and crack width less than 0.4mm, or cracks with a width more than 1.0mm
				1	Fissures with structural impact and crack width less than 0.4mm, or cracks with a width between 0.4-1.0mm
			Missing parts	N	Not observed or very limited
				III	Relative movements between parts have been detected and there are loose parts with a falling risk.
				II	All mortar joint is missing
				T	Partial loss of the mortar joint
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
Superstructure	Slab	Steel	Corrosion	N	Below 10% of the element's surface is affected
				III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
				1	Between 10% and 50% of the element's surface is affected
		Deformation	N	Not observed or very limited	
				III	Deformation very noticeable and severe consequences on structural/functional behavior.
				Ш	Deformation noticeable and consequences on structural/functional behavior.
				I	Deformation noticeable (above 1mm)

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Superstructure	Steel	Crack	N	Not observed or very limited
				III	Identified cracks have extended to main components and may lead to breakage or collapse.
				П	Identified cracks have extended to main components further propagation leads to depression and pavement damage.
				T	Cracks are identified in elements but are unlikely to reach the main components immediately.
			Others	N	Not observed or very limited
				Ш	Urgent action
				II	Mid-term action
				I	Partialy damaged but maintain function
	Slab	Concrete	Honeycomb	N	Not observed or very limited
				III	<25mm deep without Reinf. Expossure (>50% surface)
				II	0-5mm deep (<50% of surface)
				T	Partially observed
			Deformation	N	Not observed or very limited
			(leaning)	III	Deformation of slab is observed clearly
				II	Suspected deformation of slab is observed
				I	Non-active process without consequence on structural and functional properties, deformation of slab is hardly detectable visually < 10 mm
			Spalling	N	Not observed or very limited
				III	The spalling depth is over 100 mm and wide area
				II	Partially depth is over 100 mm.
				T	Partially depth is between 10 and 100 mm.
			Spalling concrete	N	Not observed or very limited
			showing reinforcing bars	III	The spalling observed of components and corrosion/rupture of reinforcing bars widely.
				II	The spalling observed of components and corrosion of reinforcing bars limited.
				T	The spalling observed partially and limited to find no corrosion of reinforcing bars.

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Slab	Concrete	Crack	N	Not observed or very limited and crack width less than 0.2mm
				III	Cracks more than 0.3 mm wide with intervals of less than 30cm in biaxial direction togher with water leakage, free lime
				II	Cracks within 0.2-0.3 mm width in a uniaxial direction with water leakage
				1	Cracks are within 0.2 mm with no indication of water leakage.
			Precipitate	N	Not observed or very limited
			(Freelime, Rust fluid)	III	The deterioration extent is over 50% of the element surface or there are other associated moderate or high severity deteriorations
				II	The deterioration extent is below 50% of the element surface or there are not any associated moderate or high severity deteriorations
				1	Partially observed.
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
Superstructure	Slab	Slab (Wooden)	Corrosion-Rotting	N	Below 10% of the element's surface is affected
				III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
				1	Between 10% and 50% of the element's surface is affected
			Deformation	N	Not observed or very limited
				III	Relative movements between parts have been detected and there are loose parts with a falling risk that may cause a serious accident.
				II	All mortar joint is missing
				1	Partial mortar joint is missing

Category	Element	Material	Deterioration	Severity	Indicator
Superstructure	Slab	Others	Crack	N	Not observed or very limited
				III	Serious crack and water leakage, concrete falls off due to the action of wheel load
				II	Latticed crack and water leakage
				1	Crack limited of the part or water leakage from penetrated crack
			Missing parts	N	Not observed or very limited
				III	The part loss has a serious impact on the element's structural behavior.
				II	The missing has a moderate impact on the element's structural behavior.
				1	The missing part has a minor impact on the element's structural behavior.
			Others	N	Not observed or very limited
			III	Urgent action	
				II	Mid-term action
				1	Partialy damaged but maintain function
Sub-structure	Abutment	Concrete	Honeycomb	N	Not observed or very limited
				III	<25mm deep without Reinf. Expossure (>50% surface)
				II	o-5mm deep (<50% of surface)
				1	Partially observed
			Deformation	N	Not observed or very limited
			(Leaning)	III	Leaning of abutment is observed clearly
				II	Suspected leaning of abutment observed.
				T	Non-active process without consequence on structural & functional properties. Leaning of abutment is hardly detectable visually <10mm
			Spalling	N	Not observed or very limited
				III	The spalling depth is over 100mm and wide area
				II	Spalling depth is over 100 mm.
				1	Spalling depth is between 10 and 100 mm.

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Abutment	Concrete	Spalling concrete	N	Not observed or very limited
				III	The spalling observed of components and corrosion/rupture of reinforcing bars widely.
			Spalling concrete showing reinforcing bars Crack Subsidence Scouring Others Corrosion	II	The spalling observed of components and corrosion of reinforcing bars limited.
				1	The spalling observed partially and limited to find no corrosion of reinforcing bars.
			Crack	N	Not observed or very limited and longitudinal crack width less than 0.4mm
				III	Serious crack and water leakage, concrete falls off due to the action
				Ш	Longitudinal/transvere crack width more than 1.0mm, or latticed crack with water leakage/freelime
				1	Longitudinal/transvere crack width between 0.4-1.0mm, or crack limited
			Subsidence	N	Not observed or very limited
				III	Any subsidence observed and serious damage
				II	Any subsidence observed and damage
				1	Any subsidence observed and damage limited
			Scouring	N	Not observed or very limited
				III	Embankment/river banks/bed errosion (>50% surface) in contact with risk to structural element stability
				Ш	Embankment/river banks/bed errosion (25%-50% surface) in contact with structural element with impact on stability
				I	Embankment/river banks/bed errosion (>25% surface) in contact with wingwalls and foundation
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
			1	Partialy damaged but maintain function	
Sub-structure	Abutment	Other	Corrosion	N	Below 10% of the element's surface is affected
		(Masonry, Wooden, others)		III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				П	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Abutment	Other		1	Between 10% and 50% of the element's surface is affected
		(Masonry, Wooden, others)	Deformation	N	Not observed or very limited
			(leaning)	III	damage level 4 is not allowed since it may result to failure
				II	1% and above of the element's magnitude is affected
				1	0.10%-1% of the element's magnitude is affected
			Crack	N	Not observed or very limited and longitudinal crack width less than 0.4mm
				III	Serious crack and water leakage, concrete falls off due to the action
				II	Longitudinal/transvere crack width more than 1.0mm, or latticed crack with water leakage/freelime
				1	Longitudinal/transvere crack width between 0.4-1.0mm, or crack limited
			Subsidence	N	Not observed or very limited
				III	Any subsidence observed and serious damage
				II	Any subsidence observed and damage
				1	Any subsidence observed and damage limited
			Scouring	N	Not observed or very limited
				III	Embankment/river banks/bed errosion (>50% surface) in contact with risk to structural element stability
				II	Embankment/river banks/bed errosion (25%-50% surface) in contact with structural element with impact on stability
				I	Embankment/river banks/bed errosion (>25% surface) in contact with wingwalls and foundation
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Wing wall	Concrete	Honeycomb	N	Not observed or very limited
				III	<25mm deep without Reinf. Expossure (>50% surface)
				II	0-5mm deep (<50% of surface)
				1	Partially observed
			Deformation	N	Not observed or very limited
				Ш	Deformation hampers functional/structural properties and results in serious accidents
				II	Active process with consequence on structural & functional properties, detectable visually, deformation >1% of abutment length, >5mm/m buckling
				T	Non-active process without consequence on structural & functional properties, hardly detectable visually <10mm
			Spalling	N	Not observed or very limited
				III	The spalling depth is over 100mm and wide area
				II	Spalling depth is over 100 mm.
				1	Spalling depth is between 10 and 100 mm.
			Spalling concrete	N	Not observed or very limited
			showing reinforcing bars	III	The spalling observed of components and corrosion/rupture of reinforcing bars widely.
				Ш	The spalling observed of components and corrosion of reinforcing bars limited.
				1	The spalling observed partially and limited to find no corrosion of reinforcing bars.
			Crack	N	Not observed or very limited and longitudinal crack width less than 0.4mm
				III	Serious crack and water leakage, concrete falls off due to the action
				II	Longitudinal/transvere crack width more than 1.0mm, or latticed crack with water leakage/freelime
				1	Longitudinal/transvere crack width between 0.4-1.0mm, or crack limited
			Subsidence	N	Not observed or very limited
				III	Any subsidence observed and serious damage
				Ш	Any subsidence observed and damage
				1	Any subsidence observed and damage limited

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Wing wall	Concrete	Scouring	N	Not observed or very limited
				III	Embankment/river banks/bed errosion (>50% surface) in contact with risk to structural element stability
				II	Embankment/river banks/bed errosion (25%-50% surface) in contact with structural element with impact on stability
				I	Embankment/river banks/bed errosion (>25% surface) in contact with wingwalls and foundation
			Others	N	Not observed or very limited
				III	Urgent action
				Ш	Mid-term action
				I	Partialy damaged but maintain function
Sub-structure	Wing wall	(Other (Masonry,	Others Corrosion Deformation (leaning)	N	Below 10% of the element's surface is affected
		Wooden, Others))		III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
			Deformation (leaning) III C	Between 10% and 50% of the element's surface is affected	
				Not observed or very limited	
				III	Deformation hampers functional/structural properties and results in serious accidents
				II	Active process with consequence on structural & functional properties, detectable visually, deformation >1% of abutment length, >5mm/m buckling
				I	Non-active process without consequence on structural & functional properties, hardly detectable visually <10mm
			Crack	N	Not observed or very limited and longitudinal crack width less than 0.4mm
				III	Serious crack and water leakage, concrete falls off due to the action
				Ш	Longitudinal/transvere crack width more than 1.0mm, or latticed crack with water leakage/freelime
				1	Longitudinal/transvere crack width between 0.4-1.0mm, or crack limited

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Wing wall pier	Others	Subsidence	N	Not observed or very limited
				III	Any subsedence observed and serious damage
				II	Any subsedence observed and damage
				1	Any subsedence observed and damage limited
			Scouring	N	Not observed or very limited
				III	Embankment/river banks/bed errosion (>50% surface) in contact with risk to structural element stability
				Ш	Embankment/river banks/bed errosion (25%-50% surface) in contact with structural element with impact on stability
				1	Embankment/river banks/bed errosion (>25% surface) in contact with wingwalls and foundation
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				T	Partialy damaged but maintain function
Sub-structure	Pier	Concrete	Honeycomb	N	Not observed or very limited
				III	<25mm deep without Reinf. Expossure (>50% surface)
				II	0-5mm deep (<50% of surface)
				I	Partially observed
			Deformation	N	Not observed or very limited
			(leaning)	III	Deformation hampers functional/structural properties and results in serious accidents
				Ш	Active process with consequence on structural & functional properties, detectable visually, deformation >1% of abutment length, >5mm/m buckling
				1	Non-active process without consequence on structural & functional properties, hardly detectable visually <10mm
			Spalling	N	Not observed or very limited
				Ш	The spalling depth is over 100mm and wide area
				II	Partially depth is over 100 mm.
				1	Partially depth is between 10 and 100 mm.

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Pier	Conrete	Spalling concrete	N	Not observed or very limited
			showing reinforcing bars	III	The spalling observed of components and corrosion/rupture of reinforcing bars widely.
				II	The spalling observed of components and corrosion of reinforcing bars limited.
				I.	The spalling observed partially and limited to find no corrosion of reinforcing bars.
			Crack	N	Not observed or very limited and longitudinal crack width less than 0.4mm
				III	Serious crack and water leakage, concrete falls off due to the action
				П	Longitudinal/transvere crack width more than 1.0mm, or latticed crack with water leakage/freelime
				l l	Longitudinal/transvere crack width between 0.4-1.0mm, or crack limited
			Subsidence	N	Not observed or very limited
				III	Any subsedence observed and serious damage
				II	Any subsedence observed and damage
				l l	Any subsedence observed and damage limited
			Scouring	N	Not observed or very limited
				Ш	Embankment/river banks/bed errosion (>50% surface) in contact with risk to structural element stability
				II	Embankment/river banks/bed errosion (25%-50% surface) in contact with structural element with impact on stability
				I	Embankment/river banks/bed errosion (>25% surface) in contact with wingwalls and foundation
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				I	Partialy damaged but maintain function

Category	Element	Material	Deterioration	Severity	Indicator
Sub-structure	Pier	(Other (Masonry,	Corrosion	N	Below 10% of the element's surface is affected
		Wooden, others))		III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
		34.16.6,7		II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
				I	Between 10% and 50% of the element's surface is affected
			Deformation	N	Not observed or very limited
				III	Damage level 4 is not allowed since it may result to failure
				II	1% and above of the element's magnitude is affected
				I	0.10%-1% of the element's magnitude is affected
			Crack	N	Not observed or very limited and longitudinal crack width less than 0.4mm
				III	Serious crack and water leakage, concrete falls off due to the action
				II	Longitudinal/transvere crack width more than 1.0mm, or latticed crack with water leakage/freelime
				I	Longitudinal/transvere crack width between 0.4-1.0mm, or crack limited
			Subsidence	N	Not observed or very limited
				III	Any subsedence observed and serious damage
				II	Any subsedence observed and damage
				I	Any subsedence observed and damage limited
			Scouring	N	Not observed or very limited
				III	Embankment/river banks/bed errosion (>50% surface) in contact with risk to structural element stability
				II	Embankment/river banks/bed errosion (25%-50% surface) in contact with structural element with impact on stability
				T	Embankment/river banks/bed errosion (>25% surface) in contact with wingwalls and foundation
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function

Category	Element	Material	Deterioration	Severity	Indicator
Bearing	Bearing	Main body(Steel)	Corrosion	N	Not observed or very limited
	Bearing			III	The bearing and its attachment, the girder ends may collapse
				II	Significant corrosion with a decrease in plate thickness is progressing
				1	Corrosion is found in the bearing body, the bearing functions is reducted
			Deformation	N	Not observed or very limited
				III	The bearing body seriously damaged
				П	The bearing body damaged
				1	The paint on the bearing has deteriorated, and the pedestal concrete is spalling.
			Missing parts	N	Not observed or very limited
				III	The mounting bolt of the bearing is missed/broken or the support function is deteriorated
				П	The mounting bolt of the bearing is missed/broken
				1	Bolts are loosening.
			Rupture	N	Not observed or very limited
				III	Deformation/ mising parts found
				II	NA
				1	NA
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
		Main body	Crack	N	Not observed or very limited
		(Rubber)		III	NA
				II	The rubber bearing body has noticeable cracks
				1	NA

Category	Element	Material	Deterioration	Severity	Indicator
Bearing	Bearing	Main body	Deformation	N	Not observed or very limited
		(Rubber)		III	The bearing body seriously damaged
				II	The bearing body damaged
				1	The paint on the bearing has deteriorated, and the pedestal concrete is spalling.
			Rubber breaks	N	Not observed or very limited
				Ш	Over 50% loss of surface has occurred preventing the structural behavoiur of the element
				II	Over 50% surface affected with over 20% loss of section or when 50% of the sonsidered area is affected but the elements structural behavoiur is not hampered
				1	10-50% percentage of sufrace affected with no loss of section found
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
Bearing	Around bearing		II Mid-term action I Partialy damaged but maintain function Corrosion N Not observed or very limited III The element's surface is entirely affected. There is section loss		Not observed or very limited
				III	The element's surface is entirely affected. There is section loss (over 20% of the thickness)
				II	Over 50% of the element surface is affected, with section loss (less than 20% of the thickness)
				1	The base concret to be chipped
			Deformation	N	Not observed or very limited
				III	The bearing body seriously damaged
				II	The bearing body damaged
				1	The paint on the bearing has deteriorated, and the pedestal concrete is spalling.
			Stagnant Water	N	Not observed or very limited
				III	Always wet condition at bearing, water mark (penetrating surrounding area)
				II	Wet debris (entire location)
				1	parially water stagnant or observe mark of water stagnant. Soil or debris

Category	Element	Material	Deterioration	Severity	Indicator
Bearing	Around bearing		Sedimentation	N	Not observed or very limited
				III	Fully sedimented and wet
				II	Fully sedimented
				1	Sedimentation partial
			Others	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
Embankments			Scouring	N	Not observed or very limited
				Ш	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
			Slope failure	N	Not observed or very limited
				III	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function
			Others	N	Not observed or very limited
				Ш	Urgent action
				II	Mid-term action
				1	Partialy damaged but maintain function